SNR Weighting for Shear Wave Speed Reconstruction in Tomoelastography.

NMR Biomed

Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.

Published: January 2021

In tomoelastography, to achieve a final wave speed map by combining reconstructions obtained from all spatial directions and excitation frequencies, the use of weights is inevitable. Here, a new weighting scheme, which maximizes the signal-to-noise ratio (SNR) of the final wave speed map, has been proposed. To maximize the SNR of the final wave speed map, the use of squares of estimated SNR values of reconstructed individual maps has been proposed. Therefore, derivations of the SNR of the reconstructed wave speed maps have become necessary. Considering the noise on the complex MRI signal, the SNR of the reconstructed wave speed map was formulated by an analytical approach assuming a high SNR, and the results were verified using Monte Carlo simulations (MCSs). It has been assumed that the noise remains approximately Gaussian when the image SNR is high enough, despite the nonlinear operations in tomoelastography inversion. Hence, the SNR threshold was determined by comparing the SNR computed by MCSs and analytical approximations. The weighting scheme was evaluated for accuracy, spatial resolution and SNR performances on simulated phantoms. MR elastography (MRE) experiments on two different phantoms were conducted. Wave speed maps were generated for simulated 3D human abdomen MRE data and experimental human abdomen MRE data. The simulation results demonstrated that the SNR-weighted inversion improved the SNR performance of the wave speed map by a factor of two compared to the performance of the original (i.e., amplitude-weighted) reconstruction. In the case of a low SNR, no bias occurred in the wave speed map when SNR weighting was used, whereas 10% bias occurred when the original weighting (i.e., amplitude weighting) was used. Thus, while not altering the accuracy or spatial resolution of the wave speed map with the proposed weighting method, the SNR of the wave speed map has been significantly improved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.4413DOI Listing

Publication Analysis

Top Keywords

wave speed
44
speed map
32
snr
15
final wave
12
wave
11
speed
11
snr weighting
8
map
8
weighting scheme
8
snr final
8

Similar Publications

Underwater sound propagation over a layered seabed with weak shear rigiditya).

J Acoust Soc Am

January 2025

Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.

The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.

View Article and Find Full Text PDF

Molecular Strain Accelerates Electron Transfer for Enhanced Oxygen Reduction.

J Am Chem Soc

January 2025

Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China.

Fe-N-C materials are emerging catalysts for replacing precious platinum in the oxygen reduction reaction (ORR) for renewable energy conversion. However, their potential is hindered by sluggish ORR kinetics, leading to a high overpotential and impeding efficient energy conversion. Using iron phthalocyanine (FePc) as a model catalyst, we elucidate how the local strain can enhance the ORR performance of Fe-N-Cs.

View Article and Find Full Text PDF

Squeezed dual-comb spectroscopy.

Science

January 2025

Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA.

Optical frequency combs have enabled unique advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to significant measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed.

View Article and Find Full Text PDF

Possible sarcopenia, sarcopenic obesity phenotypes and their association with diabetes: Evidence from LASI wave-1 (2017-18).

Diabetes Metab Syndr

January 2025

Department of Anthropology, University of Delhi, Delhi, 110007, India; Laboratory of Kinanthropometry, Ergonomics and Physiological Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India. Electronic address:

Aims: To assess the prevalence of possible sarcopenia and sarcopenic obesity phenotypes and investigate their association with self-reported diabetes among community-dwelling individuals aged 45 or above.

Methods: Utilizing data from 62,899 individuals in LASI wave-1 (2017-18), the assessment of possible sarcopenia was done on two critical parameters: muscle (handgrip) strength and physical performance (gait speed), following the 2019 guidelines from the Asian working group on sarcopenia (AWGS). BMI, WC, WHR, and WHtR defined sarcopenic obesity phenotypes.

View Article and Find Full Text PDF

Quantitative analysis of particle behavior constituting multiple coherent structures in liquid bridges.

J Colloid Interface Sci

January 2025

Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Chiba, Japan. Electronic address:

Hypothesis: Coherent structures by low-Stokes-number particles are induced within a closed flow, in which ordered flow regions known as Kolmogorov-Arnold-Moser (KAM) tori emerge. A variety of structures with different spatial characteristics has been predicted by varying the Stokes number, whereas the coexistence of structures in flow suspending various types of particles has not been hitherto demonstrated.

Experiments: Half-zone liquid bridges of O () are prepared as a closed system to induce thermocapillary-driven time-dependent flow under normal gravity conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!