During the initial phase of the 2014-2016 Ebola virus disease (EVD) outbreak in Monrovia, Liberia, all hospitals' isolation capacities were overwhelmed by the sheer caseload. As a stop-gap measure to halt transmission, Medecins sans Frontieres (MSF) distributed household disinfection kits to those who were at high risk of EVD contamination. The kit contained chlorine and personal protective materials to be used for the care of a sick person or the handling of a dead body. This intervention was novel and controversial for MSF. This paper shed the light on this experience of distribution in Monrovia and assess if kits were properly used by recipients. Targeted distribution was conducted to those at high risk of EVD (relatives of confirmed EVD cases) and health staff. Mass distributions were also conducted to households in the most EVD affected urban districts. A health promotion strategy focused on the purpose and use of the kit was integrated into the distribution. Follow-up phone calls to recipients were conducted to enquire about the use of the kit. Overall, 65,609 kits were distributed between September and November 2014. A total of 1,386 recipients were reached by phone. A total of 60 cases of sickness and/or death occurred in households who received a kit. The majority of these (46, 10%) were in households of relatives of confirmed EVD cases. Overall, usage of the kits was documented in 56 out of 60 affected households. Out of the 1322 households that did not experience sickness and/or death after the distribution, 583 (44%) made use of elements of the kit, mainly (94%) chlorine for hand-washing. At the peak of an EVD outbreak, the distribution of household disinfection kits was feasible and kits were appropriately used by the majority of recipients. In similar circumstances in the future, the intervention should be considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529189 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0008539 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Center for Humanitarian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.
Background: Cholera outbreaks are surging worldwide. Growing research supports case-area targeted interventions (CATIs), whereby teams provide a package of interventions to case and neighboring households, as an effective strategy in cholera outbreak control, particularly in humanitarian settings. While research exists on individual CATI interventions, research gaps exist on outcomes of integrated interventions during CATI responses.
View Article and Find Full Text PDFPlant Dis
January 2025
Guangxi University, College of Agriculture, Nanning, Guangxi, China;
Disocatus ackermannii, commonly referred to as Orchid Cactus, is a striking succulent belonging to the Cactaceae family. Its unique appearance and captivating characteristics make it a sought-after addition to gardens and courtyards beautification. In June 2023, 20-30% of D.
View Article and Find Full Text PDFToxicology
January 2025
College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea. Electronic address:
Household chemicals used daily are often combined, leading to inhalation exposure to mixtures. However, methods for assessing their toxic effects are limited. This study proposes an in vitro assay strategy for evaluating household chemical mixtures using benzalkonium chloride (BKC) and didecyldimethylammonium chloride (DDAC), a common disinfectant.
View Article and Find Full Text PDFPlant Dis
January 2025
Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;
Tulip poplar () is a member of the Magnolia family, is a large, fast-growing, long-lived, deciduous tree native to eastern North America. One-year-old tulip poplar seedlings grown under field conditions in a commercial nursery in Warren County, Tennessee, exhibited severe root rot in May 2024. Dark brown to black lesions were observed on the affected roots.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
Background/objectives: Pathogen inactivation and harmful gene destruction from water just before drinking is the last line of defense to protect people from waterborne diseases. However, commonly used disinfection methods, such as chlorination, ultraviolet irradiation, and membrane filtration, experience several challenges such as continuous chemical dosing, the spread of antibiotic resistance genes (ARGs), and intensive energy consumption.
Methods: Here, we perform a simultaneous elimination of pathogens and ARGs in drinking water using local electric fields and in-situ generated trace copper ions (LEF-Cu) without external chemical dosing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!