Angle-resolved X-ray photoelectron spectroscopy and contact-angle measurements guided by a signal attenuation model are utilized to extract molar composition and anion enrichment in the vacuum interface of a binary ionic liquid mixture, having a common quaternary ammonium cation and two different anions. By using the intensity ratio of the F1s peaks belonging to the two different anions recorded at the full electron take-off angle range, from 0° to 80°, we have determined that only a fractionally covered and anion enriched surface layer can predict the AR-XPS data, which is also consistent with surface tension measurements. Moreover, the more bulky and non-spherical anion enrichment is evident even at the conventional and the so assumed bulk sensitive take-off angle of 0°. This methodology provides a surface enrichment factor of the molecular ions and clearly serves as an experimental evidence for recently debated surface layering and/or island structure in ionic liquid systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202000750 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!