Background: The present study reports the antibacterial potential of phyto-nano-hybrid particles Ag-CuO (silver-copper oxide) against drug-resistant pathogens isolated from a Russian hospital in Krasnoyarsk, Siberia. The synthesis of nano-hybrid was achieved by phytogenic source by using leaves of Murraya koenigii. The nano-hybrid particles were well characterized using hyphenated techniques and results of the antibacterial assay was tabulated.

Results: The UV-visible spectra displayed absorption at 420 nm with the shoulder peak at 355 nm indicating the hybridization. The FTIR analysis revealed the presence of phenol, amine, methyl, carbohydrate and aromatic as major functional groups. The XRD analysis revealed the presence of Bragg's intensities at 2 theta angle depicting the crystalline nature of Ag-CuO nano-hybrid. The TEM analysis displayed the polydispered properties of Ag-CuO nano-hybrid with the size in the range of 60-80 nm exhibiting different shapes ranging from spherical, rod and oval. The antibacterial activity of Ag-CuO nano-hybrid was tested against multidrug-resistant pathogens that resulted in highest activity against P. aeruginosa strain with an inhibition zone of 14 mm in diameter. The MIC concentrations ranged from 0.3125 to 2.5 μg/ml and broth dilution assay displayed dose-dependent properties of Ag-CuO nano-hybrid particles.

Conclusion: The obtained results are interesting to report the preliminary insight to develop biocompatible hybrid particles to combat drug-resistant pathogens. The developed nano-hybrid particles displayed activity against all the test pathogens investigated against both Gram-positive and Gram-negative bacteria. Thus, the study forms preliminary investigation to report nano-hybrid particles as broad spectrum antibacterial agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505910PMC
http://dx.doi.org/10.1186/s43141-020-00068-0DOI Listing

Publication Analysis

Top Keywords

ag-cuo nano-hybrid
16
drug-resistant pathogens
12
nano-hybrid particles
12
antibacterial activity
8
nano-hybrid
8
analysis revealed
8
revealed presence
8
properties ag-cuo
8
particles
6
antibacterial
5

Similar Publications

Copper acetate/silver nitrate/polyvinylpyrrolidone was first prepared into nano-hybrid silver-doped copper oxide by electrospinning, and then nano-honeycomb particles were produced through heat-treatment. For the first time, honeycomb Ag@CuO nanoparticles were prepared by electrospinning, and a HO sensor was constructed by modifying the carbon paste electrode (CPE) with the honeycomb Ag@CuO nanoparticles. This work performed the structural, morphological, and phase analysis of the Ag@CuO nanoparticles by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Phyto-nano-hybrids of Ag-CuO particles for antibacterial activity against drug-resistant pathogens.

J Genet Eng Biotechnol

September 2020

Department of Pharmaceutical technology and Pharmacognos, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana-Zheleznyaka street, 1, Krasnoyarsk, Siberia, Russian Federation, 660022.

Background: The present study reports the antibacterial potential of phyto-nano-hybrid particles Ag-CuO (silver-copper oxide) against drug-resistant pathogens isolated from a Russian hospital in Krasnoyarsk, Siberia. The synthesis of nano-hybrid was achieved by phytogenic source by using leaves of Murraya koenigii. The nano-hybrid particles were well characterized using hyphenated techniques and results of the antibacterial assay was tabulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!