KRAS Inhibition with Sotorasib in Advanced Solid Tumors.

N Engl J Med

From the Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, University of Texas M.D. Anderson Cancer Center, Houston (D.S.H., F.M.-B.); the Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte (M.G.F.), the University of California, San Francisco, San Francisco (P.N.M.), and Amgen, Thousand Oaks (H.H., J.N., G.N., J.K., B.E.H., J.C., J.R.L., G.F.) - all in California; Duke University Medical Center, Durham, NC (J.H.S.); Royal Melbourne Hospital/Peter MacCallum Cancer Centre, Melbourne, VIC (J.D.), Queen Elizabeth Hospital and University of Adelaide, Woodville South, SA (T.J.P.), and Scientia Clinical Research, Randwick, NSW (J.C. Kuo) - all in Australia; the Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis (G.A.D.); Dana-Farber Cancer Institute, Harvard Medical School, Boston (G.I.S.); the Sarah Cannon Research Institute at HealthONE, Denver (G.S.F.); Princess Margaret Cancer Centre, University Health Network, Toronto (A.S.); Fox Chase Cancer Center, Philadelphia (C.S.D.); the University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh, Pittsburgh (T.F.B.); Seoul National University College of Medicine (Y.-J.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine (K.P.), and the Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine (T.W.K.) - all in Seoul, South Korea; Roswell Park Cancer Institute, Buffalo (G.K.D.), and Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York (P.L., B.T.L.) - all in New York; the University of Michigan, Ann Arbor (J.C. Krauss); the Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan (Y.K.); the Department of Medicine, Division of Oncology, University of Washington, Seattle (A.L.C.); Aix Marseille University, Centre National de la Recherche Scientifique, INSERM, Centre de Recherche en Cancérologie de Marseille, Assistance Publique-Hôpitaux de Marseille, Marseille, France (F.B.); Winship Cancer Institute of Emory University, Atlanta (S.S.R.); and the Alvin J. Siteman Cancer Center at Washington University School of Medicine, St. Louis (R.G.).

Published: September 2020

Background: No therapies for targeting mutations in cancer have been approved. The p.G12C mutation occurs in 13% of non-small-cell lung cancers (NSCLCs) and in 1 to 3% of colorectal cancers and other cancers. Sotorasib is a small molecule that selectively and irreversibly targets KRAS.

Methods: We conducted a phase 1 trial of sotorasib in patients with advanced solid tumors harboring the p.G12C mutation. Patients received sotorasib orally once daily. The primary end point was safety. Key secondary end points were pharmacokinetics and objective response, as assessed according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1.

Results: A total of 129 patients (59 with NSCLC, 42 with colorectal cancer, and 28 with other tumors) were included in dose escalation and expansion cohorts. Patients had received a median of 3 (range, 0 to 11) previous lines of anticancer therapies for metastatic disease. No dose-limiting toxic effects or treatment-related deaths were observed. A total of 73 patients (56.6%) had treatment-related adverse events; 15 patients (11.6%) had grade 3 or 4 events. In the subgroup with NSCLC, 32.2% (19 patients) had a confirmed objective response (complete or partial response) and 88.1% (52 patients) had disease control (objective response or stable disease); the median progression-free survival was 6.3 months (range, 0.0+ to 14.9 [with + indicating that the value includes patient data that were censored at data cutoff]). In the subgroup with colorectal cancer, 7.1% (3 patients) had a confirmed response, and 73.8% (31 patients) had disease control; the median progression-free survival was 4.0 months (range, 0.0+ to 11.1+). Responses were also observed in patients with pancreatic, endometrial, and appendiceal cancers and melanoma.

Conclusions: Sotorasib showed encouraging anticancer activity in patients with heavily pretreated advanced solid tumors harboring the p.G12C mutation. Grade 3 or 4 treatment-related toxic effects occurred in 11.6% of the patients. (Funded by Amgen and others; CodeBreaK100 ClinicalTrials.gov number, NCT03600883.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571518PMC
http://dx.doi.org/10.1056/NEJMoa1917239DOI Listing

Publication Analysis

Top Keywords

solid tumors
16
patients
13
advanced solid
12
pg12c mutation
12
objective response
12
tumors harboring
8
harboring pg12c
8
patients received
8
colorectal cancer
8
toxic effects
8

Similar Publications

Background: Intraoperative ultrasound-guided breast-conserving surgery guarantees real-time direct visualization of tumor and resection margins. We compared surgical, oncologic, and cosmetic outcomes between intraoperative ultrasound-guided breast-conserving surgery and traditional (palpation- or wire-guided) surgery across all breast cancer lesion types.

Methods: This prospective observational cohort study was conducted at the Veneto Institute of Oncology between January 2021 and October 2022.

View Article and Find Full Text PDF

Purpose: Clonal hematopoiesis (CH) has been associated with a variety of adverse outcomes, most notably hematologic malignancy and ischemic cardiovascular disease. A series of recent studies also suggest that CH may play a role in the outcomes of patients with solid tumors, including breast cancer. Here, we review the clinical and biological data that underlie potential connections between CH, inflammation, and breast cancer, with a focus on the prevalence and impact of clonal hematopoiesis of indeterminate potential in patients with breast cancer.

View Article and Find Full Text PDF

A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.

View Article and Find Full Text PDF

Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.

View Article and Find Full Text PDF

Background: The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics, increasingly supported by molecular genetic diagnostics. Data on neurotrophic tyrosine receptor kinase () gene fusion-positive uterine sarcoma, potentially aggressive and morphologically similar to fibrosarcoma, are limited due to its recent recognition. Pan-TRK immunohistochemistry (IHC) analysis serves as an effective screening tool with high sensitivity and specificity for -fusion malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!