Memantine belongs to the class of cognition enhancers that functions as NMDA receptor antagonist, used to treat Alzheimer's disease. The interaction of memantine with DNA was not investigated. In the present study, the interaction of memantine with ct-DNA, as well as its cytotoxicity on cancer cells, was evaluated. UV-visible spectroscopy, steady-state fluorescence spectroscopic studies revealed the interaction between memantine and ct-DNA. The quenching studies, chemical denaturation, (CD), and DNA melting studies showed the groove binding mode of memantine with ct-DNA. The thermodynamic parameters revealed that the interaction between memantine and ct-DNA is enthalpically driven, and the stabilizing forces involved were hydrogen bonding and van der Waals interaction. The groove-binding was also observed by molecular docking studies, which corroborated the findings of spectroscopic investigations. Density function theory calculations confirmed the existence of electron donor and recipient groups. The stability of memantine and DNA interaction, as well as the critical residues involved in the interaction, was identified by molecular dynamics simulations. Memantine showed cytotoxicity towards the cancer cells as compared to normal cells, as observed by MTT assay. Inverted compound microscopy analysis of memantine treated cancer cell lines further confirmed the results obtained by MTT assay.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2020.1823886 | DOI Listing |
J Ethnopharmacol
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China. Electronic address:
Ethnopharmacological Relevance: Yi-guan-jian decoction (YGJ) is a traditional Chinese medicine prescription commonly used for treating syndromes associated with Yin deficiency in the liver and kidney, as well as Qi-obstructed in liver.
Aim Of The Study: YGJ has shown potential alleviating cognitive dysfunction in type 2 diabetes mellitus (T2DM). However, the precise mechanisms are not yet fully understood.
Front Immunol
December 2024
Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
Background: () may be present in the intestinal mucosa of patients with inflammatory bowel disease (IBD), which is a chronic inflammation of the gastrointestinal tract. The role of in the pathogenesis of IBD remains unclear. In this study, bioinformatics techniques were used to investigate the correlation and co-pathogenic pathways between and IBD.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
December 2024
Department of Pharmacology and Toxicology, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder of complex pathogenesis and multiple interacting signaling pathways where amyloidal-β protein (Aβ) clearance plays a crucial role in cognitive decline. Herein, the current study investigated the possible modulatory effects of memantine/ rosuvastatin therapy on TGF-β1/p-Smad/p21 signaling pathway and their correlation to the blood brain barrier transporters involved in Aβ-clearance and microRNAs as a novel molecular mechanism in AD treatment. AD was induced by a single intracerebroventricular streptozotocin injection (ICV-STZ, 3 mg/kg) in rats and drug therapy was continued for 28 days after AD induction.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
Background And Purpose: Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate.
View Article and Find Full Text PDFNeuropsychopharmacology
October 2024
Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, social deficits, and cognitive impairments. Maternal use of valproic acid (VPA) during pregnancy is associated with an increased risk of ASD in offspring. The prevailing pathophysiological hypothesis for ASD involves excitation/inhibition (E/I) imbalances and serotonergic dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!