The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H S is important to maintain normal physiological functions. Conversely, abnormal levels of H S may contribute to various diseases. Due to the importance of H S in physiology and pathology, research into the effects of H S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H S.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.3831 | DOI Listing |
Bioconjug Chem
January 2025
Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1,Canada.
The ability to label synthetic oligonucleotides with fluorescent probes has greatly expanded their nanotechnological applications. To continue this expansion, it is essential to develop approachable, modular, and tunable fluorescent platforms. In this study, we present the synthesis and incorporation of an amino-formyl-thieno[3,2-]thiophene (AFTh) handle at the 5'-position of DNA oligonucleotides.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
Ferroptosis is a type of cell death triggered by the iron-dependent accumulation of lipid peroxides in cells. Diabetes, a chronic metabolic disorder characterized by hyperglycemia, can lead to various health complications. The process of ferroptosis and the progression of diabetes are closely linked to redox homeostasis, which is regulated by the levels of reactive oxygen and sulfur species.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, India.
The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of HS, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The HS induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!