There is enormous clinical value in inferring the brain regions initially atrophied in Parkinson disease for individual patients and understanding its relationship with clinical and genetic risk factors. The aim of this study is to leverage a new seed-inference algorithm demonstrated for Alzheimer's disease to the Parkinsonian context and to cluster patients in meaningful subgroups based on these incipient atrophy patterns. Instead of testing brain regions separately as the likely initiation site for each patient, we solve an L1-penalized optimization problem that can return a more predictive heterogeneous, multi-locus seed patterns. A cluster analysis of the individual seed patterns reveals two distinct subgroups (S1 versus S2). The S1 subgroup is characterized by the involvement of the brainstem and ventral nuclei, and S2 by cortex and striatum. analysis in features not included in the clustering shows significant differences between subgroups regarding age of onset and local transcriptional patterns of Parkinson-related genes. Top genes associated with regional microglial abundance are strongly associated with subgroup S1 but not with S2. Our results suggest two distinct aetiological mechanisms operative in Parkinson disease. The interplay between immune-related genes, lysosomal genes, microglial abundance and atrophy initiation sites may explain why the age of onset for patients in S1 is on average 4.5 years later than for those in S2. We highlight and compare the most prominently affected brain regions for both subgroups. Altogether, our findings may improve current screening strategies for early Parkinson onsetters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472895 | PMC |
http://dx.doi.org/10.1093/braincomms/fcaa065 | DOI Listing |
Front Neurol
January 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States.
White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease (AD). Despite their frequent appearance and their association with cognitive decline in AD, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched cognitively intact controls.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital, Yangzhou, China.
Objective: This study aims to observe the effect of enrichment rehabilitation (ER) on cognitive function in post-stroke patients and to clarify its underlying mechanism.
Methods: Forty patients with post-stroke cognitive impairment (PSCI) meeting the inclusion criteria were randomly assigned to two groups: conventional medical rehabilitation (CM group) and ER intervention (ER group). All patients underwent assessments of overall cognitive function, attention function, and executive function within 24 h before the start of training and within 24 h after the 8 weeks of training.
Front Syst Neurosci
January 2025
International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall.
View Article and Find Full Text PDFBrain Commun
January 2025
Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany.
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.
Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!