In order to further understand the mechanism of coal self-heating in the initial stage, the aldehyde group was analyzed by using the quantum chemistry methods. The charge distribution, structural parameters, and molecular orbital were analyzed to determine the active sites existing in the structure of aldehyde group. Then, a chemical reaction model including five elementary reaction sequences was established. In elementary reaction E1, the hydrogen of the aldehyde group is captured by hydroxyl to form the aldehyde radical, which provides the reactant and accumulates heat for the subsequent reaction. In elementary reaction E2, the aldehyde radical further reacts to form a carbon-free radical (R) and CO, which is the main source for CO generation during coal spontaneous combustion. In elementary reaction E3, the aldehyde radical is oxidized to a carboxyl radical, providing the reactant for elementary reaction E4, which is directly related to CO generation during coal spontaneous combustion. The thermodynamic parameters of the elementary reactions were further analyzed and confirmed by quantum chemistry methods. The results are helpful for further understanding the pathways of CO generation in the initial stage of coal spontaneous combustion, which provides theoretical support for prediction of coal spontaneous combustion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495724PMC
http://dx.doi.org/10.1021/acsomega.0c02952DOI Listing

Publication Analysis

Top Keywords

elementary reaction
20
coal spontaneous
16
spontaneous combustion
16
aldehyde group
12
aldehyde radical
12
reaction
8
coal self-heating
8
initial stage
8
quantum chemistry
8
chemistry methods
8

Similar Publications

Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.

View Article and Find Full Text PDF

CO2-driven Oxygen Vacancy Diffusion and Healing on TiO2(110) at Ambient Pressure.

Angew Chem Int Ed Engl

January 2025

KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.

Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.

View Article and Find Full Text PDF

Theoretical Insights into the Efficient Reduction of Nitrate to Ammonia on Crystalline Carbon Nitride.

ACS Appl Mater Interfaces

December 2024

Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.

The nitrate reduction reaction (NORR) has emerged as a promising approach for wastewater treatment and ammonia (NH) synthesis. Poly(triazine imide)/LiCl (PTI/LiCl), a highly crystalline carbon nitride with a well-defined structure, has shown significant potential in this field. In this study, the electronic properties and catalytic performance of PTI/LiCl for NORR were investigated through theoretical calculations.

View Article and Find Full Text PDF

The electrochemical nitrate reduction reaction (NORR) involves multiple hydrogenation and deoxygenation steps, which compete with the hydrogen evolution reaction (HER). Therefore, NORR driven in acidic media is challenging in spite of advantageous fast hydrogen transfers in its elementary steps. The findings presented in this article first demonstrate that the NORR is significantly activated even in acidic lithium nitrate solutions at LiNO concentrations exceeding 6 m on a Pt electrode (the highly effective catalyst for HER) by the formation of a "hydronium-in-salt" electrolyte (HISE), a new type of aqueous high concentration salt electrolyte.

View Article and Find Full Text PDF

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model.

Beilstein J Nanotechnol

December 2024

Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla (BUAP). Col. San Manuel, Cd. Universitaria, Av. San Claudio y 14 sur, Edif. IC5 y IC6. Puebla, Pue., 72507 México.

In this study, a simulation of the elementary chemical reactions during SiO film growth in a hot filament chemical vapor deposition (HFCVD) reactor was carried out using a 2D model. For the 2D simulation, the continuity, momentum, heat, and diffusion equations were solved numerically by the software COMSOL Multiphysics based on the finite element method. The model allowed for the simulation of the key parameters of the HFCVD reactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!