Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Targeted drugs disrupting proteins that are dysregulated in cancer have emerged as promising treatments because of their specificity to cancer cell aberrations and thus their improved side effect profile. However, their success remains limited, largely due to existing or emergent therapy resistance. We suggest that this is due to limited understanding of the entire relevant cellular landscape. A class of mathematical models called discrete dynamic network models can be used to understand the integrated effect of an individual tumor's aberrations. We review the recent literature on discrete dynamic models of cancer and highlight their predicted therapeutic strategies. We believe dynamic network modeling can be used to drive treatment decision-making in a personalized manner to direct improved treatments in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487767 | PMC |
http://dx.doi.org/10.1016/j.coisb.2018.02.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!