During navigation, landmark processing is critical either for generating an allocentric-based cognitive map or in facilitating egocentric-based strategies. Increasing evidence from manipulation and single-unit recording studies has highlighted the role of the entorhinal cortex in processing landmarks. In particular, the lateral (LEC) and medial (MEC) sub-regions of the entorhinal cortex have been shown to attend to proximal and distal landmarks, respectively. Recent studies have identified a further dissociation in cue processing between the LEC and MEC based on spatial frames of reference. Neurons in the LEC preferentially encode egocentric cues while those in the MEC encode allocentric cues. In this study, we assessed the impact of disrupting the LEC on landmark-based spatial memory in both egocentric and allocentric reference frames. Animals that received excitotoxic lesions of the LEC were significantly impaired, relative to controls, on both egocentric and allocentric versions of an object-place association task. Notably, LEC lesioned animals performed at chance on the egocentric version but above chance on the allocentric version. There was no significant difference in performance between the two groups on an object recognition and spatial T-maze task. Taken together, these results indicate that the LEC plays a role in feature integration more broadly and in specifically processing spatial information within an egocentric reference frame.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479866PMC
http://dx.doi.org/10.1177/2398212820939463DOI Listing

Publication Analysis

Top Keywords

entorhinal cortex
12
egocentric allocentric
12
lec
7
egocentric
6
allocentric
5
lateral entorhinal
4
cortex lesions
4
lesions impair
4
impair egocentric
4
allocentric object-place
4

Similar Publications

Dual inhibition of MAPK/ERK and BMP signaling induces entorhinal-like identity in mouse ESC-derived pallial progenitors.

Stem Cell Reports

December 2024

Laboratorio di Biologia, Scuola Normale Superiore, 56126 Pisa, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy. Electronic address:

The mechanisms that determine distinct embryonic pallial identities remain elusive. The central role of Wnt signaling in directing dorsal telencephalic progenitors to the isocortex or hippocampus has been elucidated. Here, we show that timely inhibition of MAPK/ERK and BMP signaling in neuralized mouse embryonic stem cells (ESCs) specifies a cell identity characteristic of the allocortex.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a type of neurodegenerative disease that describes cognitive decline and memory loss resulting in disability in movement, memory, speech etc. Which first affects the hippocampal and entorhinal cortex regions of brain. Pathogenesis of AD depends on Amyloid-β, hyper-phosphorylation of tau protein, mitochondrial dysfunction, cholinergic hypothesis and oxidative stress.

View Article and Find Full Text PDF

Numerous studies of the human brain supported by experimental results from rodent and cell models point to a central role for intracellular amyloid beta (Aβ) in the onset of Alzheimer's disease (AD). In a rat model used to study AD, it was recently shown that in layer II neurons of the anteriolateral entorhinal cortex expressing high levels of the glycoprotein reelin (Re+alECLII neurons), reelin and Aβ engage in a direct protein-protein interaction. If reelin functions as a sink for intracellular Aβ and if the binding to reelin makes Aβ physiologically inert, it implies that reelin can prevent the neuron from being exposed to the harmful effects typically associated with increased levels of oligomeric Aβ.

View Article and Find Full Text PDF

Differing Effects of Alcohol Use on Epigenetic and Brain Age in Adult Children of Parents with Alcohol Use Disorder.

Brain Sci

December 2024

Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.

Background: It is known that being the adult child of a parent with an alcohol use disorder (ACoA) can confer a wide variety of increased health and psychological risks, including higher rates of anxiety, depression, and post-traumatic stress disorder symptoms. Additionally, ACoAs are at greater risk of developing alcohol/substance use disorders (AUDs/SUDs) than individuals from families without a history of AUDs.

Methods: ACoA individuals with risky hazardous alcohol use ( = 14) and those not engaged in hazardous use ( = 14) were compared to a group of healthy controls.

View Article and Find Full Text PDF

Multifaceted Role of Specialized Neuropeptide-Intensive Neurons on the Selective Vulnerability to Alzheimer's Disease in the Human Brain.

Biomolecules

November 2024

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.

Regarding Alzheimer's disease (AD), specific neuronal populations and brain regions exhibit selective vulnerability. Understanding the basis of this selective neuronal and regional vulnerability is essential to elucidate the molecular mechanisms underlying AD pathology. However, progress in this area is currently hindered by the incomplete understanding of the intricate functional and spatial diversity of neuronal subtypes in the human brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!