Here we show that molecular doping of polymer thermoelectrics increases the electrical conductivity while reducing the thermal conductivity. A high-throughput methodology based on annealing and doping gradients within individual films is employed to self-consistently analyze and correlate electrical and thermal characteristics for the equivalent of >100 samples. We focus on the benchmark material system poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-]thiophene) (PBTTT) doped with molecular acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). The thermal conductivity of neat PBTTT films is dominated by the degree of crystallinity, with thermal percolation observed for annealing temperatures >170 °C. Upon doping the samples with a relatively low amount of F4TCNQ (anion content <1 mol %), the thermal conductivity exhibits a two-fold reduction without compromising the crystalline quality, which resembles the effect of alloy scattering observed in several inorganic systems. The analysis of the relation between thermal and electrical conductivities shows that thermal transport is dominated by a doping-induced reduced lattice contribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497712PMC
http://dx.doi.org/10.1021/acsenergylett.0c01410DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
12
molecular doping
8
thermal
5
reduction lattice
4
lattice thermal
4
conductivity
4
conductivity polymer
4
polymer semiconductors
4
semiconductors molecular
4
doping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!