Background: Nonspecific immunosuppressive therapy for graft rejection and graft-versus-host disease (GVHD) is often accompanied by severe side effects such as opportunistic infections and cancers. Several approaches have been developed to suppress transplantation reactions using tolerogenic cells, including induction of FoxP3 Tregs with antigen-loaded dendritic cells (DCs) and induction of CD4IL-10 cells with interleukin IL-10-producing DCs. Here, we assessed the effectiveness of both approaches in the suppression of graft rejection and GVHD.
Methods: IL-10-producing DCs were generated by the transfection of DCs with DNA constructs encoding mouse IL-10. Antigen-loaded DCs from C57BL/6 mice were generated by transfection with DNA constructs encoding antigenic determinants from the H2 locus of CBA mice which differ from the homologous antigenic determinants of C57BL/6 mice.
Results: We found that both IL-10-producing DCs and antigen-loaded immature DCs could suppress graft rejection and GVHD but through distinct nonspecific and antigen-specific mechanisms, respectively. . We provide data that the novel approach for DCs antigen loading using DNA constructs encoding distinct homologous determinants derived from major histocompatibility complex genes is effective in antigen-specific suppression of transplantation reactions. Such an approach eliminates the necessity of donor material use and may be useful in immunosuppressive therapy side effects prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487104 | PMC |
http://dx.doi.org/10.1155/2020/9686143 | DOI Listing |
Immunol Rev
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.
The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.
View Article and Find Full Text PDFSci Rep
December 2024
Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France.
In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.
View Article and Find Full Text PDFVet Sci
December 2024
Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks.
View Article and Find Full Text PDFVet Sci
December 2024
Laboratory of Veterinary Parasitology and Clinical Analysis, Academic Unit of Agricultural Sciences, Federal University of Jataí, Jataí 75801-615, Goiás, Brazil.
Canine monocytic ehrlichiosis (CME) is an infectious disease caused by , a globally recognized obligate intracellular bacterium. In addition to dogs, other animals, including humans, may be affected. Despite its epidemiological importance and impact on public health, there is currently no commercial vaccine against .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!