Background: This is an experimental study performed on 15 adult cadavers. In this cadaveric study, we designed and evaluated a novel methodology for determining the optimal trajectory for the placement of thoracic pedicle screws. The accuracy of thoracic pedicle screw placement is critical to the spinal surgery. The concept, implement method, and significance of the optimal thoracic pedicle trajectory have not been reported.
Methods: The experimental study was performed on 15 adult cadavers. The Mimics software was used to design optimal trajectory through the pedicle central axis. Using three-dimensional (3D) printing, a navigation module with a locating facet and a stabilizing facet was developed. The thoracic pedicle screws were inserted with the help of the navigation module. The three-dimensional coordinates for the entry and the exit points of the screws were compared between the planned trajectories and the postoperative trajectories. The differences in coordinates were analyzed to evaluate the precision of the screw placement.
Results: The trajectories through the pedicle central axis showed an excellent symmetry between the single segments and for all thoracic vertebrae. Out of a total of 358 screws that were inserted, 15 (4.2%) screws breached the pedicle cortex with a breach distance of <2 mm. The qualifying rate was 98.6% (353/358) for the entry point precision of ≥3.2 mm, and 98.9% (354/358) for the exit point precision of ≥6.4 mm. In comparison to the designed qualified rate of 100% (358/358), the χ was 3.22 and 2.26, respectively (P>0.05).
Conclusions: The optimal trajectory was obtained through the pedicle central axis, which significantly reduced the risk of cortex breach. A high degree of precision was obtained for the entry and the exit points of the screws when the postoperative trajectory was compared with the designed trajectory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475455 | PMC |
http://dx.doi.org/10.21037/atm-20-5426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!