Purpose: Glaucoma is the second commonest cause of blindness. We assessed the gene expression profile of astrocytes in the optic nerve head to identify possible prognostic biomarkers for glaucoma.
Method: A total of 20 patient and nine normal control subject samples were derived from the GSE9944 (six normal samples and 13 patient samples) and GSE2378 (three normal samples and seven patient samples) datasets, screened by microarray-tested optic nerve head tissues, were obtained from the Gene Expression Omnibus (GEO) database. We used a weighted gene coexpression network analysis (WGCNA) to identify coexpressed gene modules. We also performed a functional enrichment analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Genes expression was represented by boxplots, functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all the key genes. Then the key genes were validated by the external dataset.
Results: A total 8,606 genes and 19 human optic nerve head samples taken from glaucoma patients in the GSE9944 were compared with normal control samples to construct the co-expression gene modules. After selecting the most common clinical traits of glaucoma, their association with gene expression was established, which sorted two modules showing greatest correlations. One with the correlation coefficient is 0.56 ( = 0.01) and the other with the correlation coefficient is -0.56 ( = 0.01). Hub genes of these modules were identified using scatterplots of gene significance versus module membership. A functional enrichment analysis showed that the former module was mainly enriched in genes involved in cellular inflammation and injury, whereas the latter was mainly enriched in genes involved in tissue homeostasis and physiological processes. This suggests that genes in the green-yellow module may play critical roles in the onset and development of glaucoma. A LASSO regression analysis identified three hub genes: Recombinant Bone Morphogenetic Protein 1 gene (), Duchenne muscular dystrophy gene () and mitogens induced GTP-binding protein gene (). The expression levels of the three genes in the glaucoma group were significantly lower than those in the normal group. GSEA further illuminated that , and participated in the occurrence and development of some important metabolic progresses. Using the GSE2378 dataset, we confirmed the high validity of the model, with an area under the receiver operator characteristic curve of 85%.
Conclusion: We identified several key genes, including , and that may be involved in the pathogenesis of glaucoma. Our results may help to determine the prognosis of glaucoma and/or to design gene- or molecule-targeted drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474882 | PMC |
http://dx.doi.org/10.7717/peerj.9462 | DOI Listing |
J Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China.
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.
View Article and Find Full Text PDFInflammation
January 2025
Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China.
Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!