Seasonal polyphenism in manifests itself in two discrete adult morphotypes, the "winter morph" (WM) and the "summer morph" (SM). These morphotypes are known to differ in thermal stress tolerance, and they co-occur during parts of the year. In this study, we aimed to estimate morph-specific survival and fecundity in laboratory settings simulating field conditions. We specifically analyzed how WM and SM differed in mortality and reproduction during and after a period of cold exposure resembling winter and spring conditions in temperate climates. The median lifespan of varied around 5 months for the WM flies and around 7 months for the SM flies. WM flies showed higher survival during the cold-exposure period compared with SM flies, and especially SM males suffered high mortality under these conditions. In contrast, SM flies had lower mortality rates than WM flies under spring-like conditions. Intriguingly, reproductive status (virgin or mated) did not impact the fly survival, either during the cold exposure or during spring-like conditions. Even though the reproductive potential of WM flies was greatly reduced compared with SM flies, both WM and SM females that had mated before the cold exposure were able to continuously produce viable offspring for 5 months under spring-like conditions. Finally, the fertility of the overwintered WM males was almost zero, while the surviving SM males did not suffer reduced fertility. Combined with other studies on monitoring and overwintering behavior, these results suggest that overwintered flies of both morphotypes could live long enough to infest the first commercial crops of the season. The high mortality of SM males and the low fertility of WM males after prolonged cold exposure also highlight the necessity for females to store sperm over winter to be able to start reproducing early in the following spring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487234 | PMC |
http://dx.doi.org/10.1002/ece3.6517 | DOI Listing |
JAMA Ophthalmol
January 2025
Ophthalmology Department, Dijon University Hospital, Dijon, France.
Importance: Some patients worldwide are asked to acquire an anti-vascular endothelial growth factor (anti-VEGF) agent from a pharmacy, store it, and then bring it to a physician for intravitreal injection (IVT). Anti-VEGF agents must be stored in the refrigerator to avoid bacterial contamination or denaturation. Some cases of severe intraocular inflammation have been reported following IVT of more recently approved anti-VEGF agents, which might be explained by thermal instability.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.
View Article and Find Full Text PDFSTAR Protoc
January 2025
School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:
White adipose tissue (WAT) beiging holds significant therapeutic potential for combating obesity. Here, we present a protocol for inducing beige WAT in mice using both cold exposure and CL316,243 treatment. We describe steps for intraperitoneal injection, and subcutaneous WAT (sWAT) isolation, dissection, and fixation.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!