Aryl-alcohol oxidases (AAO) constitute a family of FAD-containing enzymes, included in the glucose-methanol-choline oxidase/dehydrogenase superfamily of proteins. They are commonly found in fungi, where their eco-physiological role is to produce hydrogen peroxide that activates ligninolytic peroxidases in white-rot (lignin-degrading) basidiomycetes or to trigger the Fenton reactions in brown-rot (carbohydrate-degrading) basidiomycetes. These enzymes catalyze the oxidation of a plethora of aromatic, and some aliphatic, polyunsaturated alcohols bearing conjugated primary hydroxyl group. Besides, the enzymes show activity on the hydrated forms of the corresponding aldehydes. Some AAO features, such as the broad range of substrates that it can oxidize (with the only need of molecular oxygen as co-substrate) and its stereoselective mechanism, confer good properties to these enzymes as industrial biocatalysts. In fact, AAO can be used for different biotechnological applications, such as flavor synthesis, secondary alcohol deracemization and oxidation of furfurals for the production of furandicarboxylic acid as a chemical building block. Also, AAO can participate in processes of interest in the wood biorefinery and textile industries as an auxiliary enzyme providing hydrogen peroxide to ligninolytic or dye-decolorizing peroxidases. Both rational design and directed molecular evolution have been employed to engineer AAO for some of the above biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.enz.2020.05.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!