The prevalence of aluminum ions (Al ) under acidic soil conditions inhibits primary root elongation and hinders plant growth and productivity. Al alters the membrane potential, displaces critical ions in the apoplast and disrupts intracellular ionic concentrations by targeting membrane-localized solute transporters. Here, we provide an overview of how Al affects the activities of several solute transporters especially in the root. High Al level impairs the functions of potassium (K ), calcium (Ca ), magnesium (Mg ), nitrate (NO ) and ammonium (NH ) transporters. We further discuss the role of some key transporters in mediating Al tolerance either by exclusion or sequestration. Anion channels responsible for organic acid efflux modulate the sensitivity to Al . The ALUMINUM ACTIVATED MALATE TRANSPORTER (ALMT) and MULTIDRUG AND TOXIC COMPOUND EXTRUSION (MATE) family of transporters exude malate and citrate, respectively, to the rhizosphere to alleviate Al toxicity by Al exclusion. The ABC transporters, aquaporins and H -ATPases perform vacuolar sequestration of Al , leading to aluminum tolerance in plants. Targeting these solute transporters in crop plants can help generating aluminum-tolerant crops in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13214 | DOI Listing |
Methods Mol Biol
January 2025
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.
View Article and Find Full Text PDFSci Rep
January 2025
Radiological Techniques Department, College of Health and Medical Techniques, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq.
This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Agricultural Engineering, Technical and Vocational University, Tehran, Iran.
With the growing need for sustainable transportation solutions, understanding the relationship between driving characteristic parameters, vehicle type, and their impact on emissions and fuel consumption over real driving scenarios is becoming increasingly important. In this paper, four conventional vehicles and one hybrid vehicle with different technologies were compared in four distinct routes in Tehran city. Nineteen real driving cycles were generated using widely employed K-means and PCA algorithms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!