In arid climate, economic activities at the territory of the "Atomic" lake is one of the topical issues for the Semipalatinsk test site (STS). Hence, the boundaries of areas with radionuclides contamination, which correspond to the level of radioactive wastes at the territory adjacent to the "Atomic" lake of STS, are to be determined. The territory around the lake is used for cattle breeding and the water of the "Atomic" lake that is the one large water source is used for livestock watering. It is important to develop measures that will limit possible negative impact on population and environment. In results of the conducted research were developed measures consisting of remediation and access limitation to the stockpile of soils with contamination level corresponding to the level of radioactive waste (RW).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2020.106389 | DOI Listing |
Small
January 2025
College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.
Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
Molecular-scale electronics focuses on understanding and utilizing charge transport through individual molecules. A key issue is the charge transport capability of a single molecule characterized by current decay. We visualize the on-site formation of conjugated polymers with varying carbon-carbon bond orders by using scanning tunneling microscopy and noncontact atomic force microscopy.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:
Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.
View Article and Find Full Text PDFACS Nano
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
Nanotwinned materials have recently attracted intense interest since they often exhibit excellent mechanical properties that are far superior to those of the corresponding single crystals. However, how nanotwinned structures affect the physical properties of functional materials remains almost unexplored. In this study, we demonstrate ferrimagnetism in a nanotwinned antiferromagnetic CrO thin film.
View Article and Find Full Text PDFNature
January 2025
Department of Mechanical Engineering, Columbia University, New York, NY, USA.
Mechanical force is an essential feature for many physical and biological processes, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics, biophysics, energy storage and medicine. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!