Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An advanced molecularly imprinted electrochemical sensor with high sensitivity and selectivity for the detection of Human immunoglobulin G (IgG) was successfully constructed. With acrylamide imprinting systems, surface imprinting on the nanoparticles CuFeO targeted at IgG was employed to prepare molecularly imprinted polymer, which served as recognition element for the electrochemical sensor. Furthermore, the sensor harnessed a molybdenum disulfide (MoS)@nitrogen doped graphene quantum dots (N-GQDs) with ionic liquid (IL) nanocomposite for signal amplification. Under optimized experimental conditions, the sensor shortened the response time to less than 8 min, and the response was linear at the IgG concentration of 0.1-50 ng·mL with a low detection limit of 0.02 ng·mL (S/N = 3). Our findings suggested that, the sensor exhibited high detectability and long-time stability. The satisfactory results of human serum sample analysis showed that the developed IgG sensor had promising potential clinical applications in detecting IgG content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480476 | PMC |
http://dx.doi.org/10.1016/j.bioelechem.2020.107671 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!