A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Are the predictions of the dynamic dominance model of laterality applicable to the lower limbs? | LitMetric

AI Article Synopsis

  • The study explores how the left and right sides of the brain specialize in controlling movements, specifically in the legs.
  • The researchers compared two tasks: a pedal aiming task for dynamic control (left hemisphere) and unipedal balance for impedance control (right hemisphere).
  • Results showed that while both feet performed equally in aiming, better balance was achieved with the left leg when moving the opposite foot, indicating right hemisphere specialization in balance over left hemisphere specialization in dynamic movements.

Article Abstract

Investigation of manual actions has supported the proposition that the right and left cerebral hemispheres have complementary specializations relevant for movement control. To test the extent to which hemisphere specialization affect lower limb control, we compared performance between the legs in two motor tasks. A pedal aiming task was employed to test the notion of left hemisphere specialization for dynamic control, and unipedal balance was employed to test the notion of right hemisphere specialization for impedance control. Evaluation was conducted on young adults, in the contexts of separate (Experiment 1) and integrated (Experiment 2) performance of the probing tasks. Results from the aiming task showed equivalent movement linearity toward the target between the right and left feet across experiments. Analysis of unipedal balance revealed that increased stance stability when supported on the left leg was observed when performing simultaneously the aiming task with the contralateral foot, but not in the context of isolated task performance. These results are inconsistent with the proposition of left hemisphere specialization for dynamic control in the lower limbs, and suggest that specialization of the right hemisphere for impedance control can be observed in balance control when stance is associated with voluntary movements of the contralateral lower limb.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2020.102684DOI Listing

Publication Analysis

Top Keywords

hemisphere specialization
16
aiming task
12
proposition left
8
lower limb
8
employed test
8
test notion
8
left hemisphere
8
specialization dynamic
8
dynamic control
8
unipedal balance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!