Adsorption is an effective method for treating wastewater containing nickel due to its minimal equipment requirements and flexible operation. Therefore, an environmental friendly, inexpensive, efficient and recyclable adsorbent is needed. In this work, a reusable dual-functional super-paramagnetic adsorbent was prepared by combining APTES (3-Aminopropyltriethoxysilane) and EDTA (ethylenediaminetetraacetic acid disodium) with magnetic diatomite for the removal of Ni. It is named diatomite/CoFeO@APTES-EDTA (DECFASEs). The synthetic material was characterized and studied by XRD (X-ray Powder Diffractometer), FTIR (Fourier Transform Infrared Spectrometer), SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope), EDS (Energy Dispersive Spectrometer), VSM (Vibrating-Sample Magnetometer), BET (Brunauer-Emmett-Teller) method, Zeta potential analyzer and XPS (X-ray Photoelectron Spectroscopy), respectively. The performance of adsorption Ni by DECFASEs was studied on effect of pH, reaction time and initial concentrations. The adsorption and desorption capacity and recyclability of the adsorbent material were estimated. A adsorption kinetic data had a significant correlation with the pseudo second-order kinetic and also adsorption isotherm data corresponded well with Freundlich adsorption isotherm. The maximum adsorption capacity of the adsorbent material was 19.22 mg/g. The Ni adsorption capacity of DECFASEs decreased slightly from 9.11 to 8.25 mg/g after 4 recycles. The XPS results of DECFASEs before and after Ni uptake showed N and O participated in the complexation of Ni in the adsorption process, which verified the chemical interaction between Ni and DECFASEs. Modified-diatomite is a promising adsorbent for aqueous Ni removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.08.119 | DOI Listing |
Langmuir
January 2025
School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.
Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States.
Poly(dimethylsiloxane) (PDMS) materials have been widely researched and applied as fouling-release coatings. Incorporation of silicone oils into PDMS has been shown to improve the antifouling properties of PDMS materials. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to study PDMS materials incorporated with various silicone oils containing phenyl groups in air, water, and protein solutions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions.
View Article and Find Full Text PDFLangmuir
January 2025
Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan.
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!