Angiotensin-converting enzyme 2 (ACE2) is the receptor of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. ACE2 has been shown to be down-regulated during coronaviral infection, with implications for circulatory homeostasis. In COVID-19, pulmonary vascular dysregulation has been observed resulting in ventilation perfusion mismatches in lung tissue, causing profound hypoxemia. Despite the loss of ACE2 and raised circulating vasoconstrictor angiotensin II (AngII), COVID-19 patients experience a vasodilative vasculopathy. This article discusses the interplay between the immune system and pulmonary vasculature and how SARS-CoV-2-mediated ACE2 disruption and AngII may contribute to the novel vascular pathophysiology of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497736 | PMC |
http://dx.doi.org/10.1016/j.ijid.2020.09.041 | DOI Listing |
Hypertens Res
January 2025
Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea.
Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).
Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.
J Cosmet Dermatol
January 2025
Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Background: Tissue expansion is a widely employed technique in reconstructive surgery aimed at addressing considerable skin defects. Nevertheless, matters like inadequate expansion capability and the potential for skin breakage due to the fragility of the expanded tissue present notable hurdles in enhancing skin regeneration during this process. Angiotensin-converting enzyme 2 (ACE2) is recognized for its essential role in facilitating tissue renewal and regeneration.
View Article and Find Full Text PDFAnn Intensive Care
January 2025
Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria.
Background: Acute respiratory distress syndrome (ARDS) associated with coronavirus infectious disease (COVID)-19 has been a challenge in intensive care medicine for the past three years. Dysregulation of the renin-angiotensin system (RAS) is linked to COVID-19, but also to non-COVID-19 ARDS. It is still unclear whether changes in the RAS are associated with prognosis of severe COVID-19.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:
Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.
Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!