Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peroxyacetic acid (PAA) is a commonly used antimicrobial in apple spray bar interventions during post-harvest packing. However, limited information is available about its efficacy against foodborne pathogens on fresh apples under commercial packing conditions. In this study, the practical efficacies of PAA against Listeria monocytogenes on fresh apples during spray bar operation at ambient and elevated temperature were validated in three commercial packing facilities using Enterococcus faecium NRRL B-2354 as a surrogate strain. Apples were inoculated with E. faecium at ~6.5 Log CFU/apple and subjected to PAA spray bar interventions per commercial packing line practice. At each temperature and contact time intervention combination, 20-24 inoculated apples were processed together with 72-80 non-inoculated apples. Applying 80 ppm PAA at ambient temperature (17-21 °C) achieved a similar log reduction (P > 0.05) of E. faecium on Granny Smith apples (GSA) in three apple packing facilities, which caused 1.12-1.23 and 1.18-1.32 Log CFU/apple reductions of E. faecium on GSA for 30-sec and 60-sec intervention, respectively. Increasing the temperature of the PAA solution to 43-45 °C enhanced its bactericidal effect against E. faecium, causing 1.45, 1.86 and 2.19 Log CFU/apple reductions in three packing facilities for a 30-sec contact, and 1.50, 2.24, and 2.29 Log CFU/apple reductions for a 60-sec contact, respectively. Similar efficacies (P > 0.05) of PAA at both ambient and elevated temperature were also observed on Fuji apples. Spraying PAA on apples at ambient or elevated temperature reduced the level of E. faecium cross-contamination from inoculated apples to non-inoculated apples but could not eliminate cross-contamination. Data from this study provides valuable technical information and a reference point for the apple industry in controlling L. monocytogenes and verifying the effectiveness of their practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2020.103590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!