Nanomechanical properties of zirconium anodized in a mixture of electrolytes with fluoride ions.

J Mech Behav Biomed Mater

Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania; Academy of Romanian Scientists, 54 Spaiul Independentei, 050094, Bucharest, Romania. Electronic address:

Published: December 2020

AI Article Synopsis

  • The study presents nanostructured zirconium (Zr) as a potential alternative to titanium for metallic implants, focusing on its preparation using anodization in a fluoride-rich electrolyte.
  • Analyzed through various techniques, the resulting nanostructured Zr featured oxide layers around 7.45 μm thick with nanopores averaging 15.8 nm in diameter.
  • The research indicates that this nano-porous Zr exhibits similar hardness to uncoated Zr but better antimicrobial properties, particularly against bacteria like E. coli and Streptococcus aureus, highlighting its promise for biomedical uses.

Article Abstract

The present work introduces nanostructured Zr as a possible choice of metallic implant biomaterial in competition with titanium and its new alloys. The paper reports on the preparation of anodized zirconium in a mixture of electrolytes with fluoride ions, 1 M (NH)2SO + 0.15 M NHF + distilled water, at 20 V. The obtained nanostructures were investigated by SEM, EDX, XRD and AFM techniques. The SEM - EDX longitudinal and cross sectional analysis revealed the morphology of the formed oxide layers and their thicknesses, which were found to be 7.45 ± 0.18 μm. The mean nanopores' diameter was calculated as 15.8 ± 3.3 nm. The XRD investigations enabled the evaluation of crystallite sizes and texture coefficients for zirconium and zirconium oxide containing samples. The inhibition effect against Escherichia coli and Streptococcus Aureus bacteria was evaluated and discussed as well. The AFM studies revealed that the nano-porous Zr has similar hardness parameter as the uncoated Zr, but lower surface adhesion force that could be translated into improved properties in terms of antimicrobial effects, as confirmed by its inhibition index, which makes it a very promising material for bio-medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.104084DOI Listing

Publication Analysis

Top Keywords

mixture electrolytes
8
electrolytes fluoride
8
fluoride ions
8
sem edx
8
nanomechanical properties
4
zirconium
4
properties zirconium
4
zirconium anodized
4
anodized mixture
4
ions work
4

Similar Publications

Road properties of cement-phosphogypsum-red clay under dry and wet cycles.

PLoS One

December 2024

School of Civil Engineering, Guizhou University, Guiyang, Guizhou Province, China.

In this paper, the road performance and mechanism of cement-phosphogypsum-red clay (CPRC) under dry and wet cycling were systematically investigated using 5% cement as curing agent, the mass ratio of phosphogypsum: red clay = 1:1, and 5% SCA-2 as water stabilizer. The road performance of dry and wet cycle mix was verified with the National Highway G210 Duyun Yangan to Yingshan Highway Reconstruction and Expansion Project as a test road to provide a scientific basis for the application of cement-phosphogypsum-red clay on roads. The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter.

View Article and Find Full Text PDF

Rare earth elements (REEs) are critical materials to modern technologies. They are obtained by selective separation from mining feedstocks consisting of mixtures of their trivalent cation. We are developing an all-aqueous, bioinspired, interfacial separation using peptides as amphiphilic molecular extractants.

View Article and Find Full Text PDF

The global aim to move away from fossil fuels requires efficient, inexpensive and sustainable energy storage to fully use renewable energy sources. Thermal energy storage materials in combination with a Carnot battery could revolutionize the energy storage sector. However, a lack of stable, inexpensive and energy-dense thermal energy storage materials impedes the advancement of this technology.

View Article and Find Full Text PDF

Soil contamination by organic and hazardous substances is a critical environmental issue, particularly in developing countries. This study investigates the limitations of double-layer theory for bentonite-organic contaminant interactions through experimental and numerical analysis. Using NaCl and KCl as salts and acetone, isopropyl alcohol, and glycerol as organic contaminants, the research explores the rheological properties of Na-bentonite dispersions.

View Article and Find Full Text PDF

Nonflammable Electrolytes With Weakly Lithiophilic Diluents for Stabilizing Silicon-Based Lithium-Ion Batteries.

Small

December 2024

State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China.

Stabilization of the silicon-based anode in lithium-ion batteries heavily depends on electrolyte engineering. However, despite the effectiveness of localized high-concentration electrolytes in enhancing battery life, most studies have focused on solvents and lithium salts, highlighting the urgent need for advanced diluents tailored to silicon-based anodes. Here, a nonflammable electrolyte with a weakly lithiophilic diluent is reported by introducing methyl perfluorobutyl ether into a mixture of lithium bis(fluorosulfonyl)imide and 1,2-dimethoxyethane, for the enhancement of silicon-based anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!