Age-related differences of motor cortex plasticity in adults: A transcranial direct current stimulation study.

Brain Stimul

Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany. Electronic address:

Published: April 2021

Background: Cognitive, and motor performance are reduced in aging, especially with respect to acquisition of new knowledge, which is associated with a neural plasticity decline. Animal models show a reduction of long-term potentiation, but not long-term depression, in higher age. Findings in humans are more heterogeneous, with some studies showing respective deficits, but others not, or mixed results, for plasticity induced by non-invasive brain stimulation. One reason for these heterogeneous results might be the inclusion of different age ranges in these studies. In addition, a systematic detailed comparison of the age-dependency of neural plasticity in humans is lacking so far.

Objective: We aimed to explore age-dependent plasticity alterations in adults systematically by discerning between younger and older participants in our study.

Methods: We recruited three different age groups (Young: 18-30, Pre-Elderly: 50-65, and Elderly: 66-80 years). Anodal, cathodal, or sham transcranial direct current stimulation (tDCS) was applied over the primary motor cortex with 1 mA for 15 min to induce neuroplasticity. Cortical excitability was monitored by single-pulse transcranial magnetic stimulation as an index of plasticity.

Results: For anodal tDCS, the results show a significant excitability enhancement, as compared to sham stimulation, for both, Young and the Pre-Elderly groups, while no LTP-like plasticity was obtained in the Elderly group by the applied stimulation protocol. Cathodal tDCS induced significant excitability-diminishing plasticity in all age groups.

Conclusion: Our study provides further insight in age-related differences of plasticity in healthy humans, which are similar to those obtained in animal models. The decline of LTP-like plasticity in higher age could contribute to cognitive deficits observed in aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2020.09.004DOI Listing

Publication Analysis

Top Keywords

plasticity
9
age-related differences
8
motor cortex
8
transcranial direct
8
direct current
8
current stimulation
8
neural plasticity
8
animal models
8
higher age
8
ltp-like plasticity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!