Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel progress has been made to understand the adverse pathophysiology in the pancreas of offspring exposed to overnutrition in utero. Our study is the first to evaluate whether the adverse effects of maternal overnutrition on offspring β-cell function are reversible or preventable through preconception maternal diet interventions. Herein, offspring mice were exposed in utero to one of the following: maternal normal-fat diet (NF group), maternal high-fat diet (HF group) or maternal diet transition from an HF to NF diet 9 weeks before pregnancy (H9N group). Offspring mice were subjected to postweaning HF diet for 12 weeks. HF offspring, but not H9N, displayed glucose intolerance and insulin resistance. HF male offspring had enlarged islet β-cells with reduced β-cell density, whereas, H9N male offspring did not show these changes. Co-immunofluorescent (Co-IF) staining of glucose transporter 2 (Glut2) and insulin (Ins) revealed significantly more Glut2Ins cells, indicative of insulin degranulation, in HF male offspring but not H9N. In addition, Co-IF of insulin and p-H3S10 indicated that β cells of HF male offspring, but not H9N, had proliferation defects likely due to inhibited protein kinase B (AKT) phosphorylation. In summary, our study demonstrates that maternal H9N diet effectively prevents functional deterioration of β cells seen in HF male offspring by avoiding β-cell proliferation defects and degranulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643480 | PMC |
http://dx.doi.org/10.1016/j.jnutbio.2020.108495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!