Hyperglycemia associated with Diabetes Mellitus type 1 (DM1) comorbidity may cause severe complications in several tissues that lead to premature death. These dysfunctions are related, among others, to redox imbalances caused by the uncontrolled cellular levels of reactive oxygen species (ROS). Brain is potentially prone to develop diabetes complications because of its great susceptibility to oxidative stress. In addition to antioxidant enzymes, mitochondria-coupled hexokinase (mt-HK) plays an essential role in maintaining high flux of oxygen and glucose to control the mitochondrial membrane and redox potential in brain. This redox control is critical for healthy conditions in brain and in the pathophysiological progression of DM1. The mitochondrial and mt-HK contribution in this process is essential to understand the relationship between DM1 complications and the management of the cellular redox balance. Using a rat model of one month of hyperglycemia induced by a single administration intraperitoneally of streptozotocin, we showed in the present work that, in rat brain mitochondria, there is a specifically reduction of the mitochondrial complex I (CI) activity and an increase in the activity of the antioxidant enzyme thioredoxin reductase, which are related to decreased hydrogen peroxide generation, oxygen consumption and mt-HK coupled-to-OxPhos activity via mitochondrial CI. Surprisingly, DM1 increases respiratory parameters and mt-HK activity via mitochondrial complex II (CII). This way, for the first time, we provide evidence that early progression of hyperglycemia, in brain tissue, changes the coupling of glucose phosphorylation at the level of mitochondria by rearranging the oxidative machinery of brain mitochondria towards CII dependent electron harvest. In addition, DM1 increased the production of HO by α-ketoglutarate dehydrogenase without causing oxidative stress. Finally, DM1 increased the oxidation status of PTEN and decreased the activation of NF-kB in DM1. These results indicate that this reorganization of glucose-oxygen-ROS axis in mitochondria may impact turnover of glucose, brain amino acids, redox and inflammatory signaling. In addition, this reorganization may be involved in early protection mechanisms against the development of cognitive degeneration and neurodegenerative disease, widely associated to mitochondrial CI deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2020.09.017 | DOI Listing |
Ophthalmol Ther
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.
Introduction: Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
Objectives: This paper aims to review the immunopathogenesis of Diabetes-associated periodontitis (DPD) and to propose a description of the research progress of drugs with potential clinical value from an immunotherapeutic perspective.
Materials And Methods: A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Web of Science, Scopus and the Cochrane Library. Inclusion criteria were studies on the association between diabetes and periodontitis using the Boolean operator "AND" for association between diabetes and periodontitis, with no time or language restrictions.
Apoptosis
January 2025
Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
Diabetes is a chronic metabolic disease that is endemic worldwide and is characterized by persistent hyperglycemia accompanied by multiple severe complications, including cardiovascular disease, kidney dysfunction, neuropathy, and retinopathy. The pathogenesis of diabetes mellitus and its complications is multifactorial, involving various molecular and cellular pathways. In recent years, research has indicated that mechanisms of cell death play a significant role in the advancement of diabetes and its complications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Republic of Korea.
To determine longitudinal changes in the peripapillary retinal nerve fiber layer (pRNFL) thickness in type 2 diabetes mellitus (T2DM) patients with hypertension (HTN). Participants were divided into three groups: normal controls (Group 1), patients with T2DM (Group 2), and patients with both T2DM and HTN (Group 3). Following the initial examination, patients underwent three additional examinations at 1-year intervals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
To illustrate the anti-diabetic properties of Berberis orthobotrys seeds was the aim of the current study. After a series of experiments, two doses of aqueous methanolic extract of the seeds were selected i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!