Hsp90 is a promising drug target for cancer therapy. However, toxicity and moderate effect are limitations of current inhibitors owing to broad protein degradation. The fungal mycotoxin penisuloxazin A (PNSA) belongs to a new epipolythiodiketopiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system. PNSA bound to cysteine residues C572/C598 of CT-Hsp90 with disulfide bonds and inhibits Hsp90 activity, resulting in apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. We identified that analogues PEN-A and HDN-1 bound to C572/C597 and C572 of CT-Hsp90α respectively, with binding pattern very similar to PNSA. These ETPs exhibited different effects on ATPase activity, dimerization formation and selectivity on client protein of Hsp90, indicating client recognition of Hsp90 can be exactly regulated by different sites of Hsp90. Our findings not only offer new chemotypes for anticancer drug development, but also help to better understand biological function of Hsp90 for exploring inhibitor with some client protein bias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2020.114218 | DOI Listing |
Front Microbiol
January 2025
Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.
Introduction: Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as , and . These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States.
The mycotoxigenic fungi, and , commonly co-colonize maize in the field, yet their direct interactions at the chemical communication level have not been well characterized. Here, we examined if and how the two most infamous mycotoxins produced by these species, aflatoxin and fumonisin, respectively, govern interspecies growth and mycotoxin production. We showed that fumonisin producing strains of suppressed the growth of while non-producers did not.
View Article and Find Full Text PDFFood Technol Biotechnol
December 2024
University of Zagreb Faculty of Agriculture, Division of Phytomedicine, Department of Plant Pathology, Svetošimunska 25, 10000 Zagreb, Croatia.
Research Background: The use of plant extracts in the biological control of fungal plant diseases can reduce the use of fungicides and residues in food by effectively suppressing mycotoxigenic microorganisms. The focus of interest is therefore finding plant extracts that have antifungal properties and are not toxic to organisms, so that they can be used for the biological control of economically important phytopathogenic fungi such as . Species of the genus are considered economically important pathogenic fungi of numerous agricultural crops, which not only cause significant losses but also produce mycotoxins that reach consumers through food.
View Article and Find Full Text PDFMalays J Med Sci
December 2024
First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
Food safety is a key priority for public health. However, consumer demand for cheese products may expose the population to the risk of mycotoxicosis and cancer, among others. Acute mycotoxicosis and cancer are examples of linked disorders.
View Article and Find Full Text PDFIn this study, a rapid and accurate analytical method was developed for the simultaneous determination of 26 plant toxins and 11 mushroom toxins in toxic plants, toxic mushrooms, and their cooked products using LC-MS/MS. This method enables highly selective detection of all 37 analytes, including those with high polarity and low molecular weight, within 10 min using Scherzo SS-C18 column. The analytes were extracted from the samples using methanol and trichloroacetic acid, and purified using Captiva EMR-Lipid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!