Over the past two centuries, great scientific efforts have been spent on deciphering the structure and function of the cerebral cortex using a wide variety of methods. Since the advent of MRI neuroimaging, significant progress has been made in imaging of global white matter connectivity (connectomics), followed by promising new studies regarding imaging of grey matter laminar compartments. Despite progress in both fields, there still lacks mesoscale information regarding cortical laminar connectivity that could potentially bridge the gap between the current resolution of connectomics and the relatively higher resolution of cortical laminar imaging. Here, we systematically review a sample of prominent published articles regarding cortical laminar connectivity, in order to offer a simplified data-driven model that integrates white and grey matter MRI datasets into a novel way of exploring whole-brain tissue-level connectivity. Although it has been widely accepted that the cortex is exceptionally organized and interconnected, studies on the subject display a variety of approaches towards its structural building blocks. Our model addresses three principal cortical building blocks: cortical layer definitions (laminar grouping), vertical connections (intraregional, within the cortical microcircuit and subcortex) and horizontal connections (interregional, including connections within and between the hemispheres). While cortical partitioning into layers is more widely accepted as common knowledge, certain aspects of others such as cortical columns or microcircuits are still being debated. This study offers a broad and simplified view of histological and microscopical knowledge in laminar research that is applicable to the limitations of MRI methodologies, primarily regarding specificity and resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12021-020-09491-7 | DOI Listing |
Front Neurosci
January 2025
Functional Magnetic Resonance Imaging (FMRI) Core, NIH, National Institute of Mental Health, Bethesda, MD, United States.
The use of submillimeter resolution functional magnetic resonance imaging (fMRI) is increasing in popularity due to the prospect of studying human brain activation non-invasively at the scale of cortical layers and columns. This method, known as laminar fMRI, is inherently signal-to-noise ratio (SNR)-limited, especially at lower field strengths, with the dominant noise source being of thermal origin. Furthermore, laminar fMRI is challenged with signal displacements due to draining vein effects in conventional gradient-echo blood oxygen level-dependent (BOLD) imaging contrasts.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.
View Article and Find Full Text PDFIn our dynamic environments, predictive processing is vital for auditory perception and its associated behaviors. Predictive coding formalizes inferential processes by implementing them as information exchange across cortical layers and areas. With laminar-specific blood oxygenation level dependent we measured responses to a cascading oddball paradigm, to ground predictive auditory processes on the mesoscopic human cortical architecture.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!