Distribution of segmental chromosomal alterations in neuroblastoma.

Clin Transl Oncol

Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe, Valencia, Spain.

Published: June 2021

Background: Neuroblastoma (NB) is a heterogeneous tumor with extremely diverse prognosis according to clinical and genetic factors such as specific combinations of chromosomal imbalances.

Methods: Molecular karyotyping data from a national neuroblastic tumor database of 155 NB samples were analyzed and related to clinical data.

Results: Segmental chromosomal alterations (SCA) were detected in 102 NB, whereas 45 only displayed numerical alterations. Incidence of SCA was higher in stage M (92%) and MYCN amplified (MNA) NB (96%). Presence of SCA was associated with older age, especially 1q gain and 3p deletion. 96% of the deaths were observed in the SCA group and 85% of the relapsed NB contained SCA. The alteration most commonly associated with a higher number of other segmental rearrangements was 11q deletion, followed by 4p deletion. Whole-chromosome 19 gain was associated with lower stages, absence of SCA and better outcome.

Conclusions: SCA are not randomly distributed and are concentrated on recurrent chromosomes. The most frequently affected chromosomes identify prognostic factors in specific risk groups. SCA are associated with older age and MNA. We have identified a small subset of patients with better outcome that share whole-chromosome 19 numeric gain, suggesting its use as a prognostic biomarker in NB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12094-020-02497-2DOI Listing

Publication Analysis

Top Keywords

segmental chromosomal
8
chromosomal alterations
8
factors specific
8
sca
8
sca associated
8
associated older
8
older age
8
distribution segmental
4
alterations neuroblastoma
4
neuroblastoma background
4

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.

View Article and Find Full Text PDF

Background: , a winter annual grass weed native to Eastern Europe and Western Asia, has become a widespread invasive species in the wheat-growing regions of China due to its high environmental adaptability. This study aims to explore the molecular mechanisms underlying the stress resistance of Tausch's goatgrass, focusing on the gene family.

Methods: A genome-wide analysis was conducted to identify and characterize the gene family in .

View Article and Find Full Text PDF

White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited.

View Article and Find Full Text PDF

Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination.

Forensic Sci Int Genet

January 2025

Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!