Surface topography is a key parameter in regulating the morphology and behavior of single cells. At multicellular level, coordinated cell displacements drive many biological events such as embryonic morphogenesis. However, the effect of surface topography on collective migration of epithelium has not been studied in detail. Mastering the connection between surface features and collective cellular behaviour is highly important for novel approaches in tissue engineering and repair. Herein, we used photopatterned microtopographies on azobenzene-containing materials and showed that smooth topographical cues with proper period and orientation can efficiently orchestrate cell alignment in growing epithelium. Furthermore, the experimental system allowed us to investigate how the orientation of the topographical features can alter the speed of wound closure in vitro. Our findings indicate that the extracellular microenvironment topography coordinates their focal adhesion distribution and alignment. These topographic cues are able to guide the collective migration of multicellular systems, even when cell-cell junctions are disrupted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501301 | PMC |
http://dx.doi.org/10.1038/s41598-020-71567-w | DOI Listing |
Nanoscale
January 2025
Department of Chemistry and Materials Science, Tietotie 3, Espoo, 02150, Finland.
Superhydrophobic surfaces are essential in various industries such as textiles, aviation, electronics and biomedical devices due to their exceptional water-repellent properties. Black silicon (b-Si) would be an ideal candidate for some applications due to its nanoscale topography made with a convenient lithography-free step and complementary metal-oxide-semiconductor (CMOS) compatible fabrication process. However, its use is hindered by serious issues with mechanical robustness.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
November 2024
Department of Psychiatry, Washington University Medical School, St Louis, Missouri.
Background: Existing functional connectivity studies of psychosis use population-averaged functional network maps, despite highly variable topographies of these networks across the brain surface. We aimed to define the functional network areas and topographies in the general population and the changes associated with psychotic experiences (PEs) and disorders.
Methods: Maps of 8 functional networks were generated using an individual-specific template-matching procedure for each participant from the Human Connectome Project Young Adult cohort ( = 1003) and from a matched case cohort (schizophrenia [SCZ], = 27; bipolar disorder, = 35) scanned identically with the same Connectom scanner.
Cleft Palate Craniofac J
January 2025
Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
Craniosynostosis, a condition marked by the premature fusion of one or more cranial sutures, exhibits diverse phenotypes. This study aims to advance the understanding of these phenotypes beyond the conventional 2-dimensional analysis by focusing on identifying indicators of increased intracranial pressure (ICP) such as bony thinning or irregularities in skull morphology. A retrospective review was conducted for all pediatric patients with midline craniosynostosis who presented to our tertiary academic center for evaluation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India. Electronic address:
This study aims to enhance the antidiabetic potential of Vanadium pentoxide (VO) by synthesizing chitosan-based nanoparticles (NPs). Chitosan and its derivatives were used to fabricate VO NPs, ensuring enhanced antioxidant and antidiabetic activity. Surface topography was analyzed using atomic force microscopy (AFM), revealing bioactive sites on the NPs with improved electron-transfer capability, as confirmed by cyclic voltammetry (CV).
View Article and Find Full Text PDFBiomater Adv
January 2025
School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom. Electronic address:
Laser-powder bed fusion (PBF-LB) has enabled production of customised skeletal implants that incorporate porous lattices structures to enable bone ingrowth. However, the inherent surface roughness of PBF-LB, characterised by partially adhered particles and undulating sub-topography, remains a barrier to adoption. As such PBF-LB surfaces require several time-consuming post-processing steps, nevertheless, conventional finishing techniques are often limited by geometrical part complexity, making them unsuitable for porous PBF-LB parts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!