Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501237PMC
http://dx.doi.org/10.1038/s41467-020-18604-4DOI Listing

Publication Analysis

Top Keywords

molecular self-assembly
8
dynamics molecular
8
graphene devices
8
highly sensitive
8
molecular
5
dynamics
5
graphene
4
graphene transistors
4
transistors real-time
4
real-time monitoring
4

Similar Publications

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

Although pancreatic cancer presents with one of the most unfavorable prognoses, its treatment options are very limited. Mitochondria-targeting moieties, considered a new and prominent treatment modality, are expected to demonstrate synergistic anticancer effects due to their distinct mechanism compared to conventional chemotherapeutic approaches. This study evaluated the therapeutic potential of mitochondria-accumulating self-assembly peptides, referred to as Mito-FFs, utilizing both in vitro and in vivo pancreatic cancer models.

View Article and Find Full Text PDF

This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and flake-like and irregular structure under scanning electron microscope (SEM), indicating the formation of complexes through ultrasonic-assisted preparation. X-ray diffraction pattern further confirmed the transition from the original A-type structure for native starch to V-type structure for starch-lipid complexes, and the relative crystallinity of starch-lipid complexes increased as the ultrasound intensity and treatment time increased.

View Article and Find Full Text PDF

Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.

View Article and Find Full Text PDF

Quantification of solvation forces with amplitude modulation AFM.

J Colloid Interface Sci

January 2025

Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via R. Rubattino 81 20134 Milan, Italy. Electronic address:

Hypothesis: Interfacial solvation forces arise from the organisation of liquid molecules near solid surfaces. They are crucial to fundamental phenomena, spanning materials science, molecular biology, and technological applications, yet their molecular details remain poorly understood. Achieving a complete understanding requires imaging techniques, such as three-dimensional atomic force microscopy (3D AFM), to provide atomically resolved images of solid-liquid interfaces (SLIs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!