Accurate species delimitation has a pivotal role in conservation biology, and it is especially important for threatened species where decisions have political and economic consequences. Finding and applying appropriate character sets and analytical tools to resolve interspecific relationships remains challenging in lichenized fungi. The main aim of our study was to re-assess the species boundaries between Usnea subfloridana and Usnea florida, which have been phylogenetically indistinguishable until now, but are different in reproductive mode and ecological preferences, using fungal-specific simple sequence repeats (SSR), i.e. microsatellite markers. Bayesian clustering analysis, discriminant analysis of principal components (DAPC), minimal spanning network (MSN), and principal component analysis (PCA) failed to separate U. florida and U. subfloridana populations. However, a low significant differentiation between the two taxa was observed across all populations according to AMOVA results. Also, analysis of shared haplotypes and statistical difference in clonal diversity (M) supported the present-day isolation between the apotheciate U. florida and predominantly sorediate U. subfloridana. Our results do not provide a clear support either for the separation of species in this pair or the synonymization of U. florida and U. subfloridana. We suggest that genome-wide data could help resolve the taxonomic question in this species pair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2020.07.007 | DOI Listing |
Mitochondrial DNA B Resour
January 2025
School of Agriculture, Yunnan University, Kunming, China.
'Yunqie 9' was selected by the Horticultural Research Institute of Yunnan Academy of Agricultural Sciences based on the local environment of Yunnan Province. It is excellent in fruit quality and yield, but it is relatively weak in disease resistance. No information on complete chloroplast genome and position in the phylogeny of to restrict its genetic improvement.
View Article and Find Full Text PDFPlant Dis
January 2025
University of Torino, DISAFA - Dept. Agricultural, Forestry and Food Sciences, Largo Braccini 2, Grugliasco, TO, Italy, 10095.
Kiwifruit Vine Decline Syndrome (KVDS) is a soilborne disease affecting Actinidia fruit trees in perennial cropping systems. Since its emergence in 2012, studies have increasingly identified the oomycete as a major causative agent of the disease. is also implicated in complex soilborne disease systems of woody perennial crops, including replant disease in apple and pear.
View Article and Find Full Text PDFVet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.
With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Department of Biology, Sungshin Women's University, Seoul, Republic of Korea.
H. Lév. & Vaniot is an endemic species in Korea and is included in the clade of section in the recent classification system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!