The accumulation of low molecular weight cytoprotective compounds (osmolytes) and changes in the membrane lipids composition are of key importance for the adaptation to stress impacts. However, the reason behind the wide variety of osmolytes present in the cell remains unclear. We suggest that specific functions of osmolytes can be revealed by studying the adaptation mechanisms of the mycelial fungus Emericellopsis alkalina (Hypocreales, Ascomycota) that is resistant to both alkaline pH values and high sodium chloride concentrations. It has been established that the fungus uses different osmolytes to adapt to ambient pH and NaCl concentration. Arabitol was predominant osmolyte in alkaline conditions, while mannitol prevailed in acidic conditions. On the salt-free medium mannitol was the main osmolyte; under optimal conditions (pH 10.2; 0.4 M NaCl) arabitol and mannitol were both predominant. Higher NaCl concentrations (1.0-1.5 M) resulted in the accumulation of low molecular weight polyol - erythritol, which amounted up to 12-14%, w/w. On the contrary, changes in the composition of membrane lipids were limited under pH and NaCl impacts; only higher NaCl concentrations led to the increase in the degree of unsaturation of membrane lipids. Results obtained indicated the key role of the osmolytes in the adaptation to the ambient pH and osmotic impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2020.07.004DOI Listing

Publication Analysis

Top Keywords

membrane lipids
16
emericellopsis alkalina
8
sodium chloride
8
accumulation low
8
low molecular
8
molecular weight
8
higher nacl
8
nacl concentrations
8
osmolytes
6
nacl
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!