The National Institute of Standards and Technology (NIST), the National Institutes of Health (NIH) and other industry stakeholders have been working together to enable fluorescence intensities of flow cytometer calibration beads to be assigned quantitative equivalent reference fluorophore (ERF) values with high accuracy and precision. The ultimate goal of this effort is to accurately quantify the number of antibodies bound to individual living cells. The expansion of this effort to assign ERF values to more than 50 fluorescence channels and particles with diameters ranging from 10 μm down to 80 nm is reported here.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560418PMC
http://dx.doi.org/10.3390/ma13184111DOI Listing

Publication Analysis

Top Keywords

fluorescence channels
8
erf values
8
expanding nist
4
nist calibration
4
calibration fluorescent
4
fluorescent microspheres
4
microspheres flow
4
flow cytometry
4
cytometry fluorescence
4
channels smaller
4

Similar Publications

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Photocatalytic reduction of CO to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (TiCT ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of TiCT is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons.

View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

Plasmodesmata are cell-wall-embedded channels that evolved in the common ancestor of land plants to increase cell-to-cell communication. Whether all the fundamental properties of plasmodesmata emerged and were inherited in all land plants at the same time is unknown. Here we show that the bryophyte Marchantia polymorpha (a non-vascular plant) forms mostly simple plasmodesmata in early-developing gemmae.

View Article and Find Full Text PDF

An off-chip platform for on-demand, single-target encapsulation for ultrasensitive biomarker detection.

Biosens Bioelectron

January 2025

Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address:

Closed-channel microfluidic systems offer versatile on-chip capabilities for bioanalysis but often face complex fabrication and operational challenges. In contrast, free-boundary off-chip microfluidic platforms are relatively simple to fabricate and operate but lack the ability to perform complex tasks such as on-demand single-target sorting and encapsulation. To address these challenges, we develop an off-chip platform powered by a fluorescent-activated mechanical droplet sorting and production (FAM-DSP) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!