Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus.

Molecules

Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico.

Published: September 2020

Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure-activity relationships studies have revealed which are the important functional groups for the receptor-ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are -acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC) was determined through fluorometry. An acidic reagent 2'--(4-methylumbelliferyl)-α-d-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir ( < 0.001). Two compounds (-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571124PMC
http://dx.doi.org/10.3390/molecules25184248DOI Listing

Publication Analysis

Top Keywords

sialic acid
12
acid
10
influenza virus
8
small organic
8
proposed scaffolds
8
ascorbic acid
8
benzoic acid
8
scaffolds
5
influenza
5
novel non-sialic
4

Similar Publications

The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Integrated SegFlow, µSIA, and UPLC for Online Sialic Acid Quantitation of Glycoproteins Directly from Bioreactors.

Eng Life Sci

January 2025

Analytical Development & Analytical Attribute Science in Biologics Bristol Myers Squibb Devens Massachusetts USA.

This study emphasizes the critical importance of closely monitoring and controlling the sialic acid content in therapeutic glycoproteins, including EPO, interferon-γ, Orencia, Enbrel, and others, as the level of sialylation directly impacts their pharmacokinetics (PK), immunogenicity, potency, and overall clinical performance due to its influence on protein clearance via hepatic asialoglycoprotein receptors (ASGPR). The ASGPR recognizes and binds to glycoproteins exposed to terminal galactose or N-acetylgalactosamine residues, leading to receptor-mediated endocytosis. Recent studies have demonstrated that sialylation of O-linked glycan plays a role in protecting against macrophage galactose lectin (MGL)-mediated clearance.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Receptor binding, structure, and tissue tropism of cattle-infecting H5N1 avian influenza virus hemagglutinin.

Cell

January 2025

Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:

The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!