High-grade gliomas (HGGs) and solitary brain metastases (BMs) have similar imaging appearances, which often leads to misclassification. In HGGs, the surrounding tissues show malignant invasion, while BMs tend to displace the adjacent area. The surrounding edema produced by the two cannot be differentiated by conventional magnetic resonance (MRI) examinations. Forty-two patients with pathology-proven brain tumors who underwent conventional pretreatment MRIs were retrospectively included (HGGs, = 16; BMs, = 26). Texture analysis of the peritumoral zone was performed on the T2-weighted sequence using dedicated software. The most discriminative texture features were selected using the Fisher and the probability of classification error and average correlation coefficients. The ability of texture parameters to distinguish between HGGs and BMs was evaluated through univariate, receiver operating, and multivariate analyses. The first percentile and wavelet energy texture parameters were independent predictors of HGGs (75-87.5% sensitivity, 53.85-88.46% specificity). The prediction model consisting of all parameters that showed statistically significant results at the univariate analysis was able to identify HGGs with 100% sensitivity and 66.7% specificity. Texture analysis can provide a quantitative description of the peritumoral zone encountered in solitary brain tumors, that can provide adequate differentiation between HGGs and BMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565295 | PMC |
http://dx.doi.org/10.3390/brainsci10090638 | DOI Listing |
J Neurophysiol
January 2025
Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.
Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).
Front Neurosci
January 2025
Graduate Program in Electrical Engineering, Federal University of Pará - UFPA, Belém, Brazil.
Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Nishtar Medical University, Multan, PAK.
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a rare genetic disorder characterized by severe intrahepatic cholestasis, which often manifests in infancy with progressive liver dysfunction. We present the case of a 3-month-old infant with a one-month history of jaundice, vomiting, and bloody stools, presenting a unique set of diagnostic challenges. Initial clinical and laboratory findings indicated significant liver dysfunction, prompting further imaging and genetic analysis.
View Article and Find Full Text PDFMultiplexed Immunofluorescence (MxIF) enables detailed immune cell phenotyping, providing critical insights into cell behavior within the tumor immune microenvironment (TIME). However, signal integrity can be compromised due to the complex cyclic staining processes inherent to MxIF. Hematoxylin and Eosin (H&E) staining, on the other hand, offers complementary information through its depiction of cell morphology and texture patterns and is often visually cross-referenced with MxIF in clinical settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!