Catalytic Gold Deposition for Ultrasensitive Optical Immunosensing of Prostate Specific Antigen.

Sensors (Basel)

Department of Physical and Analytical Chemistry, University of Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain.

Published: September 2020

A major challenge in the development of bioanalytical methods is to achieve a rapid and robust quantification of disease biomarkers present at very low concentration levels in complex biological samples. An immunoassay platform is presented herein for ultrasensitive and fast detection of the prostate-specific antigen (PSA), a well-recognized cancer biomarker. A sandwich type immunosensor has been developed employing a detection antibody labeled with inorganic nanoparticles acting as tags for further indirect quantification of the analyte. The required high sensitivity is then achieved through a controlled gold deposition on the nanoparticle surface, carried out after completing the recognition step of the immunoassay, thus effectively amplifying the size of the nanoparticles from nm to µm range. Due to such an amplification procedure, quantification of the biomolecule could be carried out directly on the immunoassay plates using confocal microscopy for measurement of the reflected light produced by gold-enlarged nanostructures. The high specificity of the immunoassay was demonstrated with the addition of a major abundant protein in serum (albumin) at much higher concentrations. An extremely low detection limit for PSA quantification (LOD of 1.1 fg·mL PSA) has been achieved. Such excellent LOD is 2-3 orders of magnitude lower than the clinically relevant PSA levels present in biological samples (4-10 ng·mL) and even to monitor eventual recurrence after clinical treatment of a prostate tumor (0.1 ng·mL). In fact, the broad dynamic range obtained (4 orders of magnitude) would allow the PSA quantification of diverse samples at very different relevant levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571086PMC
http://dx.doi.org/10.3390/s20185287DOI Listing

Publication Analysis

Top Keywords

gold deposition
8
biological samples
8
psa quantification
8
orders magnitude
8
quantification
5
psa
5
catalytic gold
4
deposition ultrasensitive
4
ultrasensitive optical
4
optical immunosensing
4

Similar Publications

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

Controlled growth of silver on gold triangular nanoprisms: Improved surface enhanced Raman scattering for ultrasensitive detection of cancer biomarker.

J Colloid Interface Sci

December 2024

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Electronic address:

The precise design and synthesis of Au and Ag composite nanomaterials can provide them with richer plasmonic modes, resulting in enhanced optical properties. Here, a novel strategy was demonstrated to control the selective deposition of Ag at different positions of Au triangular nanoprisms (Au TNPs). 1,4-benzenedithiol (BDT) was selectively absorbed in different positions of Au TNPs which made Ag selectively deposited on Au TNPs.

View Article and Find Full Text PDF

In this investigation, a novel tetradentate Schiff base ligand, (ligand L) was synthesized using a simple chemical route assisted by triethylenetetramine with 4-dimethylaminocinnamaldehyde in ethanol. The chemical structure of the as-synthesized ligand was characterized using nuclear magnetic resonance (NMR) and UV-visible spectroscopy. This ligand was then employed to modify the working electrode of screen-printed carbon electrode (SPCE) for developing a modified L/SPCE sensor finalized to detection of lead ions (Pb).

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!