Steel bar corrosion caused by chloride was one of the main forms of concrete deterioration. The promotion of chloride binding capacity of cementitious materials would hinder the chloride transport to the surface of steel bar, thereby alleviating the corrosion and mitigating the deterioration. A comparative study on binding capacity of chloride in cement-fly ash system (C-FA) and cement-ground granulated blast furnace slag system (C-GGBS) with diethanol-isopropanolamine (DEIPA) was investigated in this study. Chloride ions was introduced by adding NaCl in paste, and the chloride binding capacity of the paste samples at 7 d and 60 d was examined. The hydration process was discussed via the testing of hydration heat and compressive strength. The hydrates in hardened paste was characterized by X-ray Diffractometry (XRD), Thermo Gravimetric Analysis (TGA), and Scanning Electron Microscope (SEM). The effect of DEIPA on dissolution of aluminate phase and compressive strength was discussed as well. These results showed that DEIPA could facilitate the hydration of C-FA and C-GGBS system, and the promotion effect was higher in C-FA than that in C-GGBS. DEIPA also increased the binding capacity of chloride in C-FA and C-GGBS systems. One reason was the increased chemical binding, because DEIPA facilitated the dissolution of aluminate to benefit the formation of Friedel's salt. Other reasons were the increased physical binding and migration resistance. By contrast, DEIPA presented greater ability to increase chloride binding capacity in C-FA system, because DEIPA showed stronger ability to expedite the dissolution of aluminate of FA than that of GGBS, which benefited the formation of FS, thereby promoting the chemical binding. Such results would give deep insight into using DEIPA as an additive in cement-based materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560300 | PMC |
http://dx.doi.org/10.3390/ma13184103 | DOI Listing |
Front Chem
January 2025
NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
Background: Monkeypox (Mpox) is a re-emerging zoonotic disease with limited therapeutic options, necessitating the exploration of novel antiviral agents. (turmeric) is a widely used medicinal plant known for its antioxidant and anti-inflammatory properties, primarily attributed to its bioactive curcuminoids.
Aim: This study aimed to evaluate the therapeutic potential of aqueous extract (CAE) against monkeypox through phytochemical characterization, biological assays, and computational analyses.
Future Microbiol
January 2025
Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
Aim: This study aims to explore the role of propionylation at the K32 residue of the global regulator Fis in serovar Typhi (. Typhi) and its influence on the pathogenicity of the bacteria.
Materials & Methods: Bacterial strains were cultured in media with sodium propionate supplementation.
J Agric Food Chem
January 2025
Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
4-α-Glucanotransferase (4-α-GTase, EC 2.4.1.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China. Electronic address:
Proteinaceous wastewater contains various proteins, which can be valorized to biobased volatile fatty acids (VFAs), important substrates for the synthesis of biodegradable plastics, biodiesel, bioelectricity, etc., but the influence of protein type on VFAs has never been documented. It was found that among the five proteinaceous wastewater proteins investigated, ovalbumin and casein produced the most and the least VFAs, respectively.
View Article and Find Full Text PDFJ Med Chem
January 2025
Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!