Graphdiyne Saturable Absorber for Passively Q-Switched Ho-Doped Laser.

Nanomaterials (Basel)

Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

Published: September 2020

AI Article Synopsis

  • A high-quality all-carbon nanostructure called graphdiyne (GDY) was created and tested for its ability to absorb light in the 2 μm range with a commercial mode-locked laser.
  • The GDY was utilized as an optical switcher in a Q-switched Ho laser, achieving a maximum output power of 443 mW and a pulse width of 1.38 µs at a repetition rate of 29.72 kHz under 2.4 W pump power.
  • These findings indicate that GDY is a promising material for short pulse generation in Ho-doped lasers at 2.1 μm.

Article Abstract

High-quality all-carbon nanostructure graphdiyne (GDY) saturable absorber was successfully fabricated and saturable absorption properties in the 2 μm region were characterized using a commercial mode-locked laser as a pulsed source. The fabricated GDY was first used as an optical switcher in a passively Q-switched Ho laser. Under absorbed pump power of 2.4 W, the maximum average output power and shortest pulse width were 443 mW and 1.38 µs, at a repetition rate of 29.72 kHz. The results suggest that GDY nanomaterial is a promising candidate as an optical modulator for generation of short pulses in Ho-doped lasers at 2.1 μm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558143PMC
http://dx.doi.org/10.3390/nano10091848DOI Listing

Publication Analysis

Top Keywords

saturable absorber
8
passively q-switched
8
graphdiyne saturable
4
absorber passively
4
q-switched ho-doped
4
ho-doped laser
4
laser high-quality
4
high-quality all-carbon
4
all-carbon nanostructure
4
nanostructure graphdiyne
4

Similar Publications

Dielectric waveguides are widely recognized as excellent and versatile components for integrated multifunctional photonic chips, thanks to their strong optical confinement capabilities. In this study, we present a novel semi-tapered depressed-cladding waveguide structure, designed and fabricated using femtosecond laser direct writing technology. The optical guiding performance of this semi-tapered waveguide is systematically analyzed by characterizing its loss characteristics.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

A conceptual mechanistic model of amino acid fluxes in the small intestine, taking the example of pig.

Animal

December 2024

PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France. Electronic address:

During digestion, almost 50% of absorbed essential amino acids (AAs) are metabolised by intestinal tissue, thus not appearing directly in the portal vein. This value, which is referred to as first-pass metabolism, seems high in relation to the overall efficiency of AA use considered in growth models. Experimental studies of first-pass metabolism are complicated due to the presence of numerous metabolic fluxes in the intestine and to the dynamics of digestion and absorption.

View Article and Find Full Text PDF

An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.

View Article and Find Full Text PDF

Background: 5-Aminosalicylic acid (5-ASA), the first-line therapy for ulcerative colitis, is a poorly soluble zwitterionic drug. Unformulated 5-ASA is thought to be extensively absorbed in the small intestine.

Methods: The pH-dependent solubility of 5-ASA in vitro and the intestinal membrane distribution of 5-ASA and its N-acetyl metabolite (AC-5-ASA) after the oral administration of 5-ASA were examined in fed rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!