Construction of the recombinant duck enteritis virus delivering capsid protein VP0 of the duck hepatitis A virus.

Vet Microbiol

State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150069, PR China. Electronic address:

Published: October 2020

Duck hepatitis A virus type 1 (DHAV-1) disease causes significant economic losses to the duck industry. Duck enteritis virus (DEV) is frequently used as a viral vector for aquatic poultry vaccination, but no recombinan DEV expressing DHAV-1 VP0 has been developed. In this study, we established a system for rescuing the DEV C-KCE vaccine strain by transfecting cells with six fosmid DNAs. We generated a recombinant virus (rDEV-ul41VP0) by inserting the VP0 gene of DHAV-1 into the ul41 region in the DEV C-KCE genome. DHAV-1 VP0 was stably expressed in the rDEV-ul41VP0 infected cells, but did not affect the replication properties of DEV C-KCE in cells. Duck experiments showed that rDEV-ul41VP0 could provided full protection against the lethal DEV Chinese standard challenge (DEV CSC) and conferred 70% protection against DHAV-1 161/79 at 3 days postvaccination. These results indicate that rDEV-ul41VP0 rapidly induces protection against DEV CSC and DHAV-1 in ducks, and can be served as a bivalent vaccine against DEV and DHAV-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108837DOI Listing

Publication Analysis

Top Keywords

dev c-kce
12
dev
9
duck enteritis
8
enteritis virus
8
duck hepatitis
8
hepatitis virus
8
dhav-1 vp0
8
dev csc
8
dhav-1
7
duck
6

Similar Publications

Construction of the recombinant duck enteritis virus delivering capsid protein VP0 of the duck hepatitis A virus.

Vet Microbiol

October 2020

State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150069, PR China. Electronic address:

Duck hepatitis A virus type 1 (DHAV-1) disease causes significant economic losses to the duck industry. Duck enteritis virus (DEV) is frequently used as a viral vector for aquatic poultry vaccination, but no recombinan DEV expressing DHAV-1 VP0 has been developed. In this study, we established a system for rescuing the DEV C-KCE vaccine strain by transfecting cells with six fosmid DNAs.

View Article and Find Full Text PDF

Duck enteritis virus (DEV), duck tembusu virus (DTMUV), and highly pathogenic avian influenza virus (HPAIV) H5N1 are the most important viral pathogens in ducks, as they cause significant economic losses in the duck industry. Development of a novel vaccine simultaneously effective against these three viruses is the most economical method for reducing losses. In the present study, by utilizing a clustered regularly interspaced short palindromic repeats (CRISPR)/associated 9 (Cas9)-mediated gene editing strategy, we efficiently generated DEV recombinants (C-KCE-HA/PrM-E) that simultaneously encode the hemagglutinin (HA) gene of HPAIV H5N1 and pre-membrane proteins (PrM), as well as the envelope glycoprotein (E) gene of DTMUV, and its potential as a trivalent vaccine was also evaluated.

View Article and Find Full Text PDF

Background: Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates.

Methods: To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEV(C-KCE)).

View Article and Find Full Text PDF

Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined.

View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV) is a recently emerging pathogenic flavivirus that has resulted in a huge economic loss in the duck industry. However, no vaccine is currently available to control this pathogen. Consequently, a practical strategy to construct a vaccine against this pathogen should be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!