AI Article Synopsis

Article Abstract

Objective: The aim of this systematic review was to explore the biological functions and mechanisms of epithelial-mesenchymal transition-inducing transcription factors in head and neck squamous cell carcinoma-derived cell lines. In addition, we analyzed the possible usefulness of epithelial-mesenchymal transition-inducing transcription factors as a future therapeutic target.

Design: An electronic search was performed in EMBASE, Medline/PubMed, Chinese BioMedical Literature Databases, and Cochrane Collaboration Library. Articles evaluating the relationship between epithelial-mesenchymal transition-inducing transcription factors and the biological behavior of head and neck squamous cell carcinoma cell lines were selected for this systematic review. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria.

Results: After application of the previously established inclusion/exclusion criteria, 23 articles were included in the qualitative synthesis. Our study showed that epithelial-mesenchymal transition-inducing transcription factors are essential components during the progression of head and neck squamous cell carcinomas and their overexpression is associated with a greater capacity of dissemination and survival of the tumor and resistance to cancer treatment. The inhibition of epithelial-mesenchymal transition-inducing transcription factors is able to reverse the epithelial-mesenchymal transition process and to increase the sensitivity of head and neck squamous cell carcinoma cell lines to radio/chemotherapy.

Conclusions: Analysis of the expression of epithelial-mesenchymal transition-inducing transcription factors for the prediction of prognosis and response to cancer treatment may have a significant clinical impact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2020.104904DOI Listing

Publication Analysis

Top Keywords

transcription factors
28
epithelial-mesenchymal transition-inducing
24
transition-inducing transcription
24
head neck
20
neck squamous
20
squamous cell
20
cell carcinoma
12
systematic review
12
cell lines
12
factors head
8

Similar Publications

Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).

View Article and Find Full Text PDF

Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.

Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.

View Article and Find Full Text PDF

Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers.

View Article and Find Full Text PDF

LEDGF/p75 promotes transcriptional pausing through preventing SPT5 phosphorylation.

Sci Adv

January 2025

Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.

SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.

View Article and Find Full Text PDF

Oral iron sulfide prevents acute alcohol intoxication by initiating the endogenous multienzymatic antioxidant defense system.

Sci Adv

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.

Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!