Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the feasibility of estimation and forecast of different vitality Quercus variabilis seeds by a hyperspectral imaging technique were investigated. Artificially accelerated aging was conducive to achieve the division of four vitality levels. Hyperspectral data in the first 10 h of germination were continuously collected at one-hour intervals. The optimal band was selected for the original and pre-processed spectra which were treated by multiple scatter correction (MSC) and the Savitzky-Golay first derivative (SG 1st). Five characteristic wavelength methods were compared: successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), variable important in projection (VIP), and random frog (RF). Partial least square-discriminant analysis (PLS-DA) and K-nearest neighbor (KNN) built the vitality estimation model based on different data sets, and GA + PLS-DA constructed the optimal model with the highest accuracy. According to the weight coefficient and reflectance of the characteristic band extracted by the GA, the reflectance curves of different levels over time were plotted. The data of 0 h was employed to establish the vitality forecast model. The forecast model had a high recognition rate, with PLS-DA exceeding 99% and KNN exceeding 85%. This indicated that hyperspectral imaging of seed germination processes could achieve non-destructive estimation of Q. variabilis seed vitality, and accurate prediction in a shorter time is feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118888 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!