Objective: To develop a patient/care-giver reported scale capable of easily and reliably assessing functional disability in 4 repeat tauopathies (4RTs).
Background: 4R tauopathies including progressive supranuclear palsy, corticobasal degeneration and a subset of frontotemporal dementias manifest a range of overlapping clinical phenotypes. No available rating scale is capable of evaluating the functional impact of these complex disorders.
Methods: A multi-staged modified Delphi process was used to propose, evaluate and rank potential scale items providing content validity ratios. Staged cognitive pretesting involving input from examiners, patients and caregivers was followed by validation testing in patients participating in the 4R Tauopathy Neuroimaging Initiative or the PROgressive Supranuclear Palsy CorTico-Basal Syndrome MSA Longitudinal Study. Clinimetric properties were examined using classical test theory and item response methods, assessing data quality, reliability, construct validity, convergent validity and known-group validity.
Results: The resultant Cortical Basal ganglia Functional Scale (CBFS) included questions on Motor Experiences in Daily Living (14 items) and Non-Motor Experiences of Daily Living (17 items). Reliability was acceptable for internal consistency, test-retest stability, item discrimination, item-scaling thresholds and item-fit. Examination of construct validity revealed a parsimonious two-factor solution, and concurrent validity demonstrated significant correlations between the CBFS and other measures of disease severity and functional impairment. The CBFS significantly discriminated between all diagnostic groups and controls (all AUCs>90). The CBFS scores demonstrated sensitivity to change over a 12 month follow-up in patients with probable 4RTs.
Conclusions: The CBFS is a patient/care-giver reported outcome measure with excellent clinimetric properties that captures disability correlated with motor, cognitive and psychiatric impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parkreldis.2020.08.021 | DOI Listing |
Nat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Federal State Budgetary Educational Institution, Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia.
Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
School of Medicine, Department of Neuropharmacology, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
This editorial celebrates the 80th birthday of Distinguished Professor Laszlo Zaborszky, co-founder of Brain Structure and Function, and reflects on his monumental contributions to neuroscience, particularly his pioneering work on the cholinergic basal forebrain. Professor Zaborszky's research has reshaped our understanding of this brain region's organization and function, uncovering its critical role in cognitive processes such as learning, memory, and attention. His findings have challenged longstanding assumptions, demonstrating that the cholinergic projections to the cortex are highly organized, with implications for neurodegenerative diseases like Alzheimer's.
View Article and Find Full Text PDFBMC Psychiatry
December 2024
Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
Background: The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD.
Methods: A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants.
Indian J Ophthalmol
January 2025
Department of Retina and Vitreous, University of Pittsburgh School of Medicine, Medical Retina and Vitreoretinal Surgery, Pittsburg, PA, USA.
Purpose: To evaluate various supervised machine learning (ML) statistical models to predict anatomical outcomes after macular hole (MH) surgery using preoperative optical coherence tomography (OCT) features.
Methods: This retrospective study analyzed OCT data from idiopathic MH eyes at baseline and at 1-month post-surgery. The dataset was split 80:20 between training and testing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!