Epithelial-to-mesenchymal transition (EMT) and maturation of a fibrillar tumor microenvironment play important roles in breast cancer progression. A better understanding of how these events promote cancer cell migration and invasion could help identify new strategies to curb metastasis. The nucleus and Golgi affect migration in a microenvironment-dependent manner. Nucleus size and mechanics influence the ability of a cell to squeeze through confined tumor microenvironments. Golgi positioning determines front-rear polarity necessary for migration. While the roles of individual attributes of nucleus and Golgi in migration are being clarified, how their manifold features are inter-related and work together remains to be understood at a systems level. Here, to elucidate relationships among nucleus and Golgi properties, we quantified twelve morphological and positional properties of these organelles during fibrillar migration of human mammary epithelial cells. Principal component analysis (PCA) reduced the twelve-dimensional space of measured properties to three principal components that capture 75% of the variations in organelle features. Unexpectedly, nucleus and Golgi properties that co-varied in a PCA model built with data from untreated cells were largely similar to co-variations identified using data from TGFβ-treated cells. Thus, while TGFβ-mediated EMT significantly alters gene expression and motile phenotype, it did not significantly affect the relationships among nucleus size, aspect ratio and orientation with migration direction and among Golgi size and nucleus-Golgi separation distance. Indeed, in a combined PCA model incorporating data from untreated and TGFβ-treated cells, scores of individual cells occupy overlapping regions in principal component space, indicating that TGFβ-mediated EMT does not promote a unique "Golgi-nucleus phenotype" during fibrillar migration. These results suggest that migration along spatially-confined fiber-like tracks employs a conserved nucleus-Golgi arrangement that is independent of EMT state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500656PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239188PLOS

Publication Analysis

Top Keywords

nucleus golgi
20
relationships nucleus
12
golgi properties
12
fibrillar migration
12
migration
9
epithelial-to-mesenchymal transition
8
nucleus size
8
principal component
8
pca model
8
data untreated
8

Similar Publications

Organelle-Targeting Nanoparticles.

Adv Sci (Weinh)

January 2025

Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.

Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.

View Article and Find Full Text PDF

Perinuclear organelle trauma at the nexus of cardiomyopathy pathogenesis arising from loss of function mutation.

Nucleus

December 2025

Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Over the past 25 years, nuclear envelope (NE) perturbations have been reported in various experimental models with mutations in the gene. Although the hypothesis that NE perturbations from mutations are a fundamental feature of striated muscle damage has garnered wide acceptance, the molecular sequalae provoked by the NE damage and how they underlie disease pathogenesis such as cardiomyopathy ( cardiomyopathy) remain poorly understood. We recently shed light on one such consequence, by employing a cardiomyocyte-specific deletion in the adult heart.

View Article and Find Full Text PDF

Background: Although some studies have revealed the close relationship between leptin and premature ejaculation in clinical practice, whether and how leptin participates in the regulation of ejaculatory behaviors are still unknown.

Objective: To explore the role of leptin on ejaculatory behaviors and its underlying mechanism.

Materials And Methods: Copulation behavior tests were performed after acute and chronic leptin administration at peripheral and central levels.

View Article and Find Full Text PDF

Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes.

View Article and Find Full Text PDF

Sterol regulatory element binding proteins (SREBPs) are transcription factors that reside in the endoplasmic reticulum (ER) membrane as inactive precursors. To be active, SREBPs are translocated to the Golgi where the transcriptionally active N-terminus is cleaved and released to the nucleus to regulate gene expression. Nuclear SREBP levels can be determined by immunoblot analysis; however, this method can only determine the steady-state levels of nuclear SREBPs and does not capture the actual status of activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!