Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Noninvasive MR-guided focused ultrasound (MRgFUS) treatments are promising alternatives to the surgical removal of malignant tumors. A significant challenge is assessing the viability of treated tissue during and immediately after MRgFUS procedures. Current clinical assessment uses the nonperfused volume (NPV) biomarker immediately after treatment from contrast-enhanced MRI. The NPV has variable accuracy, and the use of contrast agent prevents continuing MRgFUS treatment if tumor coverage is inadequate. This work presents a novel, noncontrast, learned multiparametric MR biomarker that can be used during treatment for intratreatment assessment, validated in a VX2 rabbit tumor model. A deep convolutional neural network was trained on noncontrast multiparametric MR images using the NPV biomarker from follow-up MR imaging (3-5 days after MRgFUS treatment) as the accurate label of nonviable tissue. A novel volume-conserving registration algorithm yielded a voxel-wise correlation between treatment and follow-up NPV, providing a rigorous validation of the biomarker. The learned noncontrast multiparametric MR biomarker predicted the follow-up NPV with an average DICE coefficient of 0.71, substantially outperforming the current clinical standard (DICE coefficient = 0.53). Noncontrast multiparametric MR imaging integrated with a deep convolutional neural network provides a more accurate prediction of MRgFUS treatment outcome than current contrast-based techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969473 | PMC |
http://dx.doi.org/10.1109/TBME.2020.3024826 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!