In single-port access surgeries, robot size is crucial due to the limited workspace. Thus, a robot may be designed under-actuated. Suturing, in contrast, is a complicated task and requires full actuation. This study aims to overcome this shortcoming by implementing an optimization-based algorithm for autonomous suturing for an under-actuated robot. The proposed algorithm approximates the ideal suturing trajectory by slightly reorienting the needle while deviating as little as possible from the ideal, full degree-of-freedom suturing case. The deviation of the path taken by a custom robot with respect to the ideal trajectory varies depending on the suturing starting location within the workspace as well as the needle size. A quantitative analysis reveals that in 13% of the investigated workspace, the accumulative deviation was less than 10 mm. In the remaining workspace, the accumulative deviation was less than 30 mm. Likewise, the accumulative deviation of a needle with a radius of 10 mm was 2.2 mm as opposed to 8 mm when the radius was 20 mm. The optimization-based algorithm maximized the accuracy of a four-DOF robot to perform a path-constrained trajectory and illustrates the accuracy-workspace correlation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2020.3024632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!