The aim of this study was to evaluate the oral, dental, and craniofacial features of individuals affected by the chronic forms of acid sphingomyelinase deficiency (ASMD). This study comprised a sample of adult and pediatric patients (n = 8) with chronic ASMD. The individuals underwent oral examinations to evaluate the occurrence of caries, as well as full-mouth periodontal examinations, to assess the occurrence and severity of periodontal diseases. Panoramic and profile radiographs were obtained to analyze dental conditions and craniofacial parameters. Participants also answered questionnaires to identify systemic impairment, parafunctional habits, and bruxism. Dental anomalies of size, shape, and number were found, with agenesis and microdontia being the predominant findings. The average of caries experience was 11.75 (±8.1). Only one patient had periodontal health and all adult individuals had periodontitis at different stages and degrees. Bruxism was found in 87.5% of the sample. The convex profile and maxillary and mandibular retrusion were the most relevant findings in the cephalometric analysis. It is concluded that individuals with chronic ASMD, in addition to several systemic manifestations, present significant modifications in their oral health, from a greater occurrence of dental anomalies, caries, periodontal disease, in addition to skeletal changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.61871 | DOI Listing |
Clin Oral Implants Res
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran.
Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.
Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.
Periodontol 2000
January 2025
ADA Forsyth Institute, Cambridge, Massachusetts, USA.
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
Introduction: Validated models describing the biomechanics of tooth extraction are scarce. This study seeks to perform experimental and numerical characterization of vertical tooth extraction biomechanics in swine incisors with imposed vertical extraction loads. Imaging analysis related mechanical outcomes to tooth geometry and applied loading rate.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!