AI Article Synopsis

  • The Covid-19 pandemic, caused by SARS-CoV-2, has intensified health challenges in regions already burdened by endemic diseases like dengue fever.
  • The similar symptoms of Covid-19 and dengue create diagnostic difficulties in resource-limited areas, increasing the risk of misdiagnosis.
  • The review highlights concerns about cross-reactivity between antibodies for both viruses, which could influence disease severity and impact vaccine development.

Article Abstract

The coronavirus disease 2019 (Covid-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health crisis with devastating effects. In particular, this pandemic has further exacerbated the burden in tropical and subtropical regions of the world, where dengue fever, caused by dengue virus (DENV), is already endemic to the population. The similar clinical manifestations shared by Covid-19 and dengue fever have raised concerns, especially in dengue-endemic countries with limited resources, leading to diagnostic challenges. In addition, cross-reactivity of the immune responses in these infections is an emerging concern, as pre-existing DENV-antibodies might potentially affect Covid-19 through antibody-dependent enhancement. In this review article, we aimed to raise the issue of Covid-19 and dengue fever misdiagnosis, not only in a clinical setting but also with regards to cross-reactivity between SARS-CoV-2 and DENV antibodies. We also have discussed the potential consequences of overlapping immunological cascades between dengue and Covid-19 on disease severity and vaccine development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536968PMC
http://dx.doi.org/10.1002/rmv.2161DOI Listing

Publication Analysis

Top Keywords

covid-19 dengue
12
dengue fever
12
dengue-endemic countries
8
covid-19
6
dengue
5
dengue double
4
double punches
4
punches dengue-endemic
4
countries asia
4
asia coronavirus
4

Similar Publications

Meeting summary: Global vaccine and immunization research forum, 2023.

Vaccine

January 2025

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA. Electronic address:

At the 2023 Global Vaccine and Immunization Research Forum (GVIRF), researchers from around the world gathered in the Republic of Korea to discuss advances and opportunities in vaccines and immunization. Many stakeholders are applying the lessons of Covid-19 to future emergencies, by advancing early-stage development of prototype vaccines to accelerate response to the next emerging infectious disease, and by building regional vaccine research, development, and manufacturing capacity to speed equitable access to vaccines in the next emergency. Recent vaccine licensures include: respiratory syncytial virus vaccines, both for the elderly and to protect infants through maternal immunization; a new dengue virus vaccine; and licensure of Covid-19 vaccines previously marketed under emergency use authorizations.

View Article and Find Full Text PDF

One of the consequences of the COVID-19 lockdown is that it hinders school-based dengue management interventions. This is due to the closure of schools and the limited availability of online lessons in certain schools. Conversely, the level of basic understanding that primary school children have about the condition is directly related to their likelihood of getting it and their ability to modify their behaviour to prevent it.

View Article and Find Full Text PDF

Measures to curb the spread of SARS-CoV-2 impacted not only COVID-19 dynamics, but also other infectious diseases, such as dengue in Brazil. The COVID-19 pandemic disrupted not only transmission dynamics due to changes in mobility patterns, but also several aspects of surveillance, such as care seeking behavior and clinical capacity. However, we lack a clear understanding of the overall impact on dengue in different parts of Brazil and the contribution of individual causal drivers.

View Article and Find Full Text PDF

Rapid human movement and dengue transmission in Bangladesh: a spatial and temporal analysis based on different policy measures of COVID-19 pandemic and Eid festival.

Infect Dis Poverty

December 2024

Ecosystem Change and Population Health Research Group, Centre for Immunology and Infection Control, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.

Background: Rapid human movement plays a crucial role in the spatial dissemination of the dengue virus. Nevertheless, robust quantification of this relationship using both spatial and temporal models remains necessary. This study aims to explore the spatial and temporal patterns of dengue transmission under various human movement contexts.

View Article and Find Full Text PDF

Alignment-Free Viral Sequence Classification at Scale.

bioRxiv

December 2024

Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.

Background: The rapid increase in nucleotide sequence data generated by next-generation sequencing (NGS) technologies demands efficient computational tools for sequence comparison. Alignment-based methods, such as BLAST, are increasingly overwhelmed by the scale of contemporary datasets due to their high computational demands for classification. This study evaluates alignment-free (AF) methods as scalable and rapid alternatives for viral sequence classification, focusing on identifying techniques that maintain high accuracy and efficiency when applied to extremely large datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!